Physics Analysis Software Framework for Belle Il J

Marko Starié

emdBelle |1 collaboration o® JoZef Stefan Institute, Ljubljana

CHEP 2015

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 1/12

-
D .
Belle Il experiment

BelleRIER%
4

SuperKEKB accelerator “

@ asymmetric eT e~ collider Belle Il detector
(4 GeV / 7 GeV)
@ nano-beam optics

@ luminosity 40 x KEKB
(8 x 103%cm~2s71)

@ tracking and vertexing
@ hadron and lepton ID
@ ~v and K| detection

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015

2/12

D .
Belle Il experiment

Broad physics program including

@ B physics (rare decays, CPV)
@ Charm physics (mixing, CPV, new resonances)
@ Tau physics (LFV)

Physics analysis software must provide

Exclusive and inclusive decay reconstructions

Reconstruction of recoil particles

o
o
o Flavor tag
@ Continuous background suppression
o

Event pre-selection (skim) / output to micro dst

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 3/12

|
Belle Il software framework (Basf2)

Data Store
 Dewen . . N Track
(pecor Raw Data Digits Clusters G Tracks ROIs
— 4

SV A O e E R

Flexible framework build of

e modules, which process data
e data store, to share data between modules

@ Data store consists of a Root-storable objects

e StoreArrays and StoreObjPtrs
o relations between elements of different data objects

Unpacker Clusterizer Track Finder Track Fit PXD Interceptor ROI Sender —I‘(’Hu?jcr Nade)

Modules are organized in a user-defined chain using python script

@ The content of the data store (or its part) can be read from or written
to a Root file at any point in the chain using dedicated modules

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 4/12

-
Basf2 ingredients

Modules

@ A module can be put into path many times; each time a new instance
is created.

@ Data processing of a module can be steered by module parameters;
parameters can be of types

e int, float, std::string
e std::tuple constructed of above types
e std::vector of all above types

Data store objects

e template classes representing single object (StoreObjPtr) or an array
of objects (StoreArray)

@ multiple data store objects of a given type can be created
o distinguished by their names

Basf2 provides all ingredients to build a framework for the physics analysis,

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 5/12

-
Physics Analysis Framework

Data model

@ class Particle: a common representation of a reconstructed particle
final state particle (e, u, 7, K, p, 7, K1)
e pre-reconstructed VO particle (Ks, A)
o reconstructed in decay (via combinations)
e internally holds Lorentz vector, vertex, error matrix, relation to
daughter particles, PDG code, and some other informations.
@ StoreArray<Particle>: array of all reconstructed particles
o a work space
e modules can append particles to this array
o modules can modify particles in this array (vertex fit!)
e modules can select particles from this array
@ class ParticleList: list of particles of a given type (PDG code)
o internally holds a vector of pointers (indices) to appropriate elements of
StoreArray<Particle>
e particle lists: single Data store objects distinguished by their names
e name composed of a standard particle name and a label: pi+:slow

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 6 /12

N
D
Modules

The basic modules

@ ParticleLoader
e appends particles constructed from mdst objects (reconstructed
tracks, ECL clusters K;, V0) to the work space
@ ParticleSelector
o selects particles from the work space (makes particle list) or
o applies selection criteria to the list (by removing unselected)
o selection criteria (Boolean expression) are given via module parameter
@ ParticleCombiner
e makes combinations from any number of input particle lists
e appends combined particles to a work-space
e creates particle list of combined particles
o VertexFitter
e performs all kinds of vertex fits on particles from a given list
o updates successfully fitted particles (on the work space) and connects
(via framework relations) the vertex object or
e removes badly fitted from the list

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 7/12

-
Modules and additional data objects

Other modules

a module for best candidate selection

a module for MC truth matching

a module for continuum suppression

TMVA teacher and expert modules

a module for flavor tagging

a module which builds and connects the rest-of-event to a particle

a ntuple maker module (flat ntuple)

Additional data objects

@ Vertex, RestOfEvent, FlavorTaglnfo, EventExtralnfo, ...
@ can be linked to particles via framework relations

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 8/12

-
Python steering

@ Commands that represent dedicated actions are defined using python
functions. Example:

def reconstructDecay(decayString. cut. path=analysis_main):

combiner = register_module('ParticleCombiner')
combiner.param('decayString’. decayString)
combiner.param('cut', cut)
path.add_module{(combiner)

reconstructDecay('D0 -> K- pi+', '1.8 < M < 1.9")

@ Decay string in this example defines input and output particle lists
e charge conjugate states are implicitly included

@ Selection criteria given as the second argument is parsed to a C++
representation during module initialization

e variable names are replaced during parsing with function pointers
o Boolean expression is per event evaluated using recursion

o Additional variables can be easily defined by user

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 9 /12

-D -
Steering example: reconstruction of D*+ — DO+, D% — K—rt

#1/usr/bin/fenv python
—%— coding: utf-8 —%-

from basf2 import #
from modularfnalysis import =
from stdLooseFSParticles import #

inputMdst{'DstarSignalMC.mdst.root') # define mdst input file

std¥erylLoosePi{) # make lists of very loosely selected pions (pi+:all. pi-:all)
stdlLoosePi() # make lists of loosely selected pions (pi+:loose, pi—:loose)
stdLooseK() # make lists of loosely selected kaons (K+:loose. K-:loose)

reconstruct DO -> K- pi+ + cc

reconstructDecay('D0 —> K-:loose pi+:loese’, '1.7 < M < 2.0 and p_CHS > 2.2")
vertexKFit ('DO’ . ©0.001)

applyCuts('D0', '1.81 < M < 1.91")

reconstruct Dx+ -> DO pi+ + cc
reconstructDecay('D#+ —> DO pi+:all’, 'Q < 0.05")
vertexKFit ('D=+", 0.001)

applyCutsC'D#+", 'Q < 0.02 and p_CHMS > 2.5")

outputUdst (' reclstar.udst.root’. ['D*+'1) # write selected events to micro dst

rocess{analysis_main) # process events
W Physics Analysis Software Okinawa, 13-17 April 2015 10 / 12

i
= Conclusions

@ An overview of the physics analysis software framework at Belle Il has
been given

@ The framework utilizes the Basf2 software framework, and uses
python for steering

@ Although the framework is still under development, a user can already
perform most of the physics analysis steps like decay reconstructions,
vertex fits, tag the flavor of a B meson and perform TMVA-based
continuum suppression.

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 11 /12

Backup: cpu usage

running steering example from slide 10 for 1000 events

Name I Calls | Time(s) | Timelms)/Call

RootInput I 1001 | 0.25 1 0.25 +- 0.36
Progress 1 1000 1| 0.01 1 0.01 +- 0.01
Gearbox I 1000 | 0.01 1 0.01 +- 0.00
Particleloader_pi+:all 1 1000 1| 0.17 | 0.17 +— 0.04
Particleloader_pi+:loose I 1000 1 0.16 | 0.16 +- 0.04
Particleloader_K+:loose I 1000 1| 0.15 1 0.15 + 0.04
ParticleCombiner_D0 -> K-:loose pi+:loose | 1000 1 0.03 1 0.03 + 0.03
Geometry I 1000 | 0.01 1 0.01 +- 0.00
Particle¥ertexFitter_DO I 1000 1 0.14 I 0.14 +- 0.15
ParticleSelector_applyCuts_DO 1 1000 1| 0.01 1 0.01 +- 0.00
ParticleCombiner_D#+ —> DO pi+:all 1 1000 1| 0.02 1 0.02 + 0.01
ParticleYertexFitter D*+ I 1000 | .11 1 0.11 +- 0.14
ParticleSelector_applyCuts_D#+ I 1000 1| 0.01 1 0.01 +— 0.00
RootOutput I 1000 1| 0.70 1 0.70 +- 1.69
Total I 1001 1 2.00 1 2.00 +- 1.77

M. Stari¢ (1JS) Physics Analysis Software Okinawa, 13-17 April 2015 12 / 12

