

Belle II

Trigger and Data Acquisition (DAQ) Systems at the Belle II Experiment

Chunhua LI

EPS-HEP

July 22-29, 2015, Vienna

Charlemand

COLECT

THE UNIVERSITY OF

MELBOURNE

DOM:

Trigger and DAQ Challenges at Belle II (I)

- High instantaneous luminosity
 - Designed peaking luminosity at SuperKEKB:
 8x10³⁵ cm⁻²s⁻¹ (40 x KEKB)
 - Total physics event rate ~15kHz @ $8x10^{35}$ cm⁻²s⁻¹
- High beam-induced backgrounds
 - Touschek scattering is dominate
 - Proportional to the inverse of the beam size
 - "Nano-Beam" scheme at Belle II → smaller beam size
 - One order higher than Belle
- Huge data flow from pixel detector (PXD)
 ~1MB/event

Process	o (nb)	Rate (Hz) @ L=8x10 ³⁵
Upsilon(4S)	1.2	960.0
Continuum	2.8	2200.0
μμ	8.0	640.0
ττ	0.8	640.0
Bhabha *	44.0	350.0
γ-γ *	2.4	19.0
Two photon **	13.0	10000.0
Total	67	~15000

^{*} Rate of Bhabha and γ-γ are pre-scaled by factor 100

^{**} Rates are estimated by the luminosity component in Belle L1 trigger rate

Trigger and DAQ Challenges at Belle II (I

- >99.9% efficient for B and D physics
- Low multiplicity processes challenge the trigger due to substantial QED background
 - LFV τ decay: τ→e/μ γ
 - Leptonic τ decay: τ→e/μ νν
 - Precision electroweak tests: ee and μμ
 - Precision ISR for g-2: $\pi\pi/KK/pp/...$ and one photon
 - Searches for Dark Photons and Light Higgs:
 0/2/4 charged particles and one photon

–

Dark photon search

LFV tau decay

Leptonic tau decay

Precision electroweak tests

Trigger

Scheme: Hardware trigger + Software trigger

- Level 1 (L1): hardware based
- High Level Trigger (HLT): software based

L1 Trigger

Requirements

- High efficiency for physics processes
- Maximum trigger rate 30kHz
- Trigger latency ~5μs
- Timing precision ≤10ns
- Two-event separation ≥200ns

Scheme

- Belle trigger concept: Sub-Triggers + Global Decision Logic
- Basic idea is the same at Belle II, but each components will be improved
 - Data flow : parallel → high-speed serial links
 - Data rate : 16 Mbps → 190 Mbps (CDC wire case)
 - Logic : hard-coded → FPGA

L1 Trigger Scheme

CDC Trigger

CDC: axial and stereo Track
 Segments (TS)

• 2D track: axial TS

- 3D trigger
 - 2D tracks in r-∮ space
 - Combine with stereo TS to determine the z-vertex
- Neural z-vertex trigger
 - Networks of Multi Layer
 Perceptron (MLP)
 - 2D tracks & stereo TS as input

ECL Trigger

- Efficient trigger for both neutral and charged particles
- Total trigger timing latency~3µs
- Upgraded 3D Bhabha-veto logic: higher efficiency for interesting low multiplicity physics new
 - Divide ECL to forward and backward parts
 - Find the most energetic clusters in each parts

- 3D Bhabha-veto logic
 - Satisfy the back-to-back topology (look-up table)
 - Cluster energy requirements

GRL

• CDC track and ECL cluster matching

- Match in \mathbf{r} - ϕ and \mathbf{Z} directions
- Δr, Δz: the deviations between cluster position and expected hit position in r-φ and Z directions on ECL, respectively.
- Expected hit position: extrapolate tracks from CDC with 3D tracking information

- Define $(\Delta r, \Delta z)$ region
- Match track t0 to the cluster c1 with the smallest Δr in its (Δr , Δz) region
- The rest are neutral clusters
- Electron ID with E/P

GRL and GDL

- O(200) L1 bits available \rightarrow abundant triggers
- Trigger menus for running conditions (i.e. E_{cm}, background)

DAQ

Components:

- Unified data link (Belle2Link)
- Common pipeline platform for electronics readout (COPPER)
- Merge data pieces from all detectors (Event builder)
- High level trigger (HLT): software based

DAQ

Designed maximum readout rate: 30kHz

Data Flow: L1 →Belle2Link →COPPER →EventBuilder →HLT

HLT

L3

- dedicated recon. algorithms
 - CDC tracking
 - ECL clustering
- $30 \text{kHz} \rightarrow 15 \text{kHz}$

Full reconstruction

- offline software framework (basf2)
- offline recon.
 algorithm with all
 detectors except PXD.

Physics-level event categories

- hadronic physics: B, D...
- low-multi.: ττ, DM...
- QED: ee, μμ, γγ...
- trigger menu
- 15 kHz \rightarrow 10 kHz

Parallel processing

- allowed in basf2 → extended to network cluster in HLT
- (20 nodes x 16 cores) /unit
- ≥5 units @2x10³⁵ cm⁻²s⁻¹, added as luminosity increase

DAQ Integration

- Cosmic ray tests (CRT) of sub-detectors and DAQ has been performed since last November.
 - CDC CRT with 6 FEEs was started, more FEEs are added
 - Stability of ECL DAQ is improved
 - KLM DAQ for CRT is ready
- Demonstration on June this year
 - ECL and CDC data-taking were run successfully.

Event rate of ECL CRT

Summary

- Belle II's trigger/DAQ systems have been much improved, and will capture more low multiplicity physics than Belle ever did, such as dark sectors, precision tests, τ decays.
 - Upgraded electronics
 - 3D CDC tracking, 3D Bhabha-veto
 - Match ing between CDC tracking and ECL cluster
 - Low level reconstruction in GRL
 - Trigger Menu
- Trigger/DAQ will be ready before Belle II commissioning (w/o VXD) on May 2017.

Backup

SuperKEKB

- An asymmetric electron-positron collider in Tsukuba, Japan
- Asymmetric beam energies
 e^{+~} 4GeV e^{-~} 7GeV
- Target Luminosity $L_{int} > 50 \text{ ab}^{-1} \text{ by 2020s (50 x Belle)}$ $L_{peak} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} (40 \times \text{KEKB})$

_ -

Belle II Detector

KLM Trigger

- Important to the detector calibrations and increase the trigger efficiency of lowmultiplicity events.
- Data exchange with Aurora core is done and works well.
- Data parser development is started
- KLM trigger finds muon tracks and K_L clusters

Event Builder

- Merge data pieces from all detectors to one event
- Large network switch
- Enough large buffers to avoid data loss or retransmission
- Two event builders before and after HLT
 - Builder 1 merge data w/o PXD for HLT
 - Builder 2 merge data from all detectors

PXD Integration

- Large event size from the PXD
 ~1MB/event, COPPER can not manage
 such huge data flow
- ATCA crate receive data from PXD.
- Two ways to reduce PXD data size and rate
 - RoI selected by ATCA system.
 - The track finding is done with SVD and CDC hit signals, the PXD hits associated with tracks are sent to the event builder.
 - The hit-track association is perform with the track parameters from HLT system.
- RoI selection happens after 5s of HLT processing time

Belle2link

- Unified datalink protocol on RocketIO (GTP) technology over optical fibers.
- Data transmission between front-end electronics of detectors to back-end COPPER based on DAQ system.
- Integrated trigger timing system interface.

COPPER Readout System

- A general purpose pipelined readout platform
- FINESSE: Belle2link receiver, receive the data from front-end
- PrPMC: a commencial CPU card, format and reduce data
- Send to event builder through ethernet connection

COPPER board: 4x FINESSE daughter cards, PrPMC Trigger receiver