

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

Precision measurements from Belle and Lepton Flavor-violating decay prospects at SuperKEKB/Belle II

K.Inami (Nagoya univ.)
For Belle/Belle-II collaboration

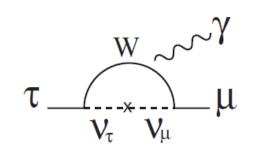
38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

Lepton Flavor-violating decay prospects at SuperKEKB/Belle II

K.Inami (Nagoya univ.)

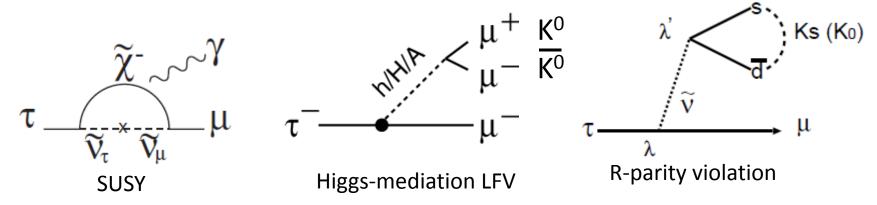
For Belle/Belle-II collaboration



Lepton Flavor Violation in tau decay

In the Standard Model, LFV is highly suppressed.

Impossible to access; Br<O(10⁻⁵⁴)


Many extensions of the SM predict LFV decays. Their branching fractions are enhanced as high as current experimental sensitivity

⇒Observation of LFV is a clear signature of New Physics (NP)

Tau lepton: the heaviest charged lepton

 Opens many possible LFV decay modes which depend on NP models

Previous B-factory at KEK

KEKB: e⁺(3.5 GeV) e⁻(8GeV)

 $\sigma(\tau\tau)^{\sim}0.9$ nb, $\sigma(bb)^{\sim}1.1$ nb

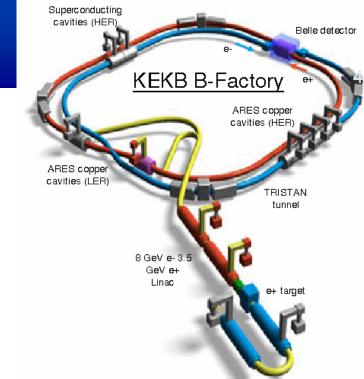
A B-factory is also a τ -factory!

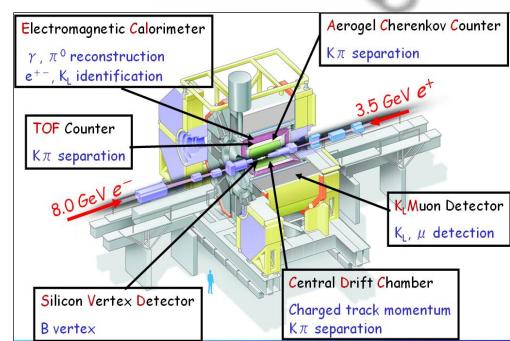
Peak luminosity: 2.1x10³⁴ cm⁻²s⁻¹

World highest luminosity!

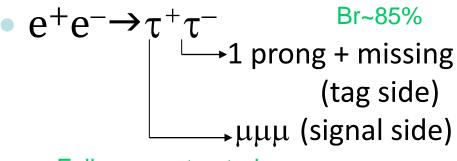
Belle Detector:

Good track reconstruction and particle identifications



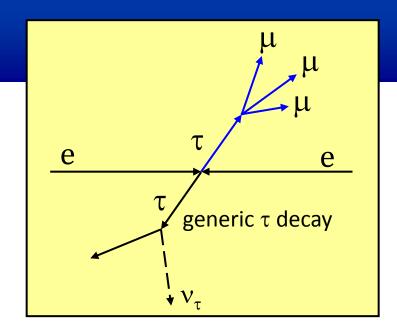

Lepton efficiency:90%

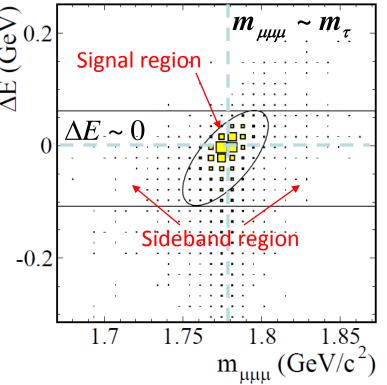
Fake rate: O(0.1) % for e


O(1)% for μ

Collected ~10⁹ τ pairs

Analysis procedure


Fully reconstructed

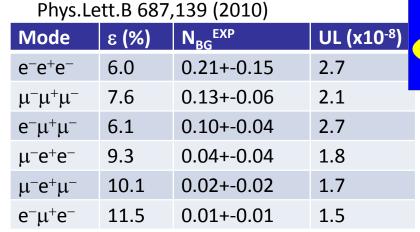

Signal extraction: $m_{\rm uuu}$ – ΔE plane

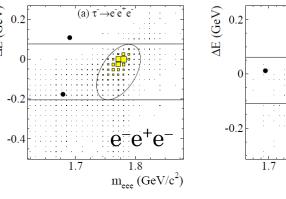
$$m_{\mu\mu\mu} = \sqrt{(E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2)}$$

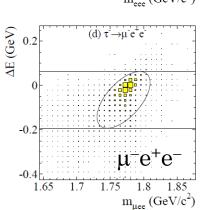
$$\Delta E = E_{\mu\mu\mu}^{CM} - E_{beam}^{CM}$$

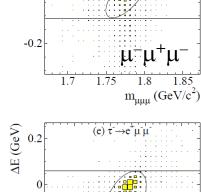
Estimate number of BG in the signal region using sideband data and MC

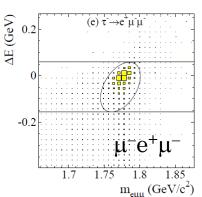
Belle

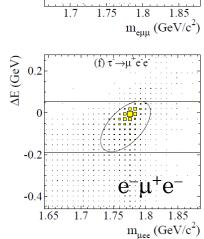

(c) $\tau \rightarrow e \mu^{\dagger} \mu$

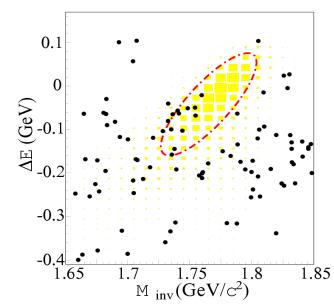

Search for $\tau \rightarrow 3$ leptons at Belle


- Data: ~7x10⁸ ττ
- No event is found in the signal region.
- Br<(1.5-2.7)x10⁻⁸ at 90% CL.
- Almost BG free
 - Because of good lepton ID


Ex.) LHCb; Phys. Lett. B724 (2013) 36 Br($\tau \rightarrow \mu \mu \mu$) <8.0x10⁻⁸ but seeing background in the fit.

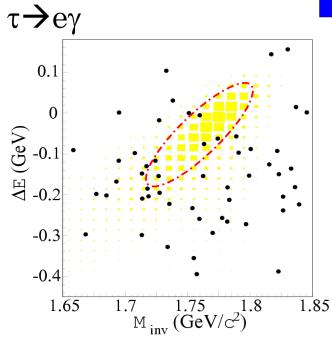



(b) $\tau \rightarrow \mu \mu^{\dagger} \mu$



VE (GeV)

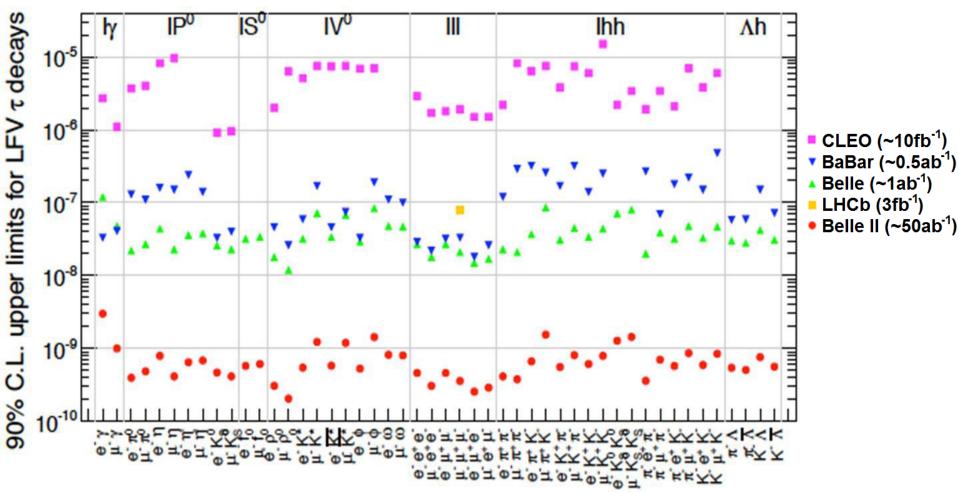
• Data; $\sim 4.8 \times 10^8 \tau \tau$ $\tau \rightarrow \mu \gamma$


- Br<4.5x10⁻⁸ at 90%C.L.

■ Dominant background $e^+e^- \rightarrow \tau^+\tau^- \gamma$, $\tau \rightarrow \mu \nu \nu$

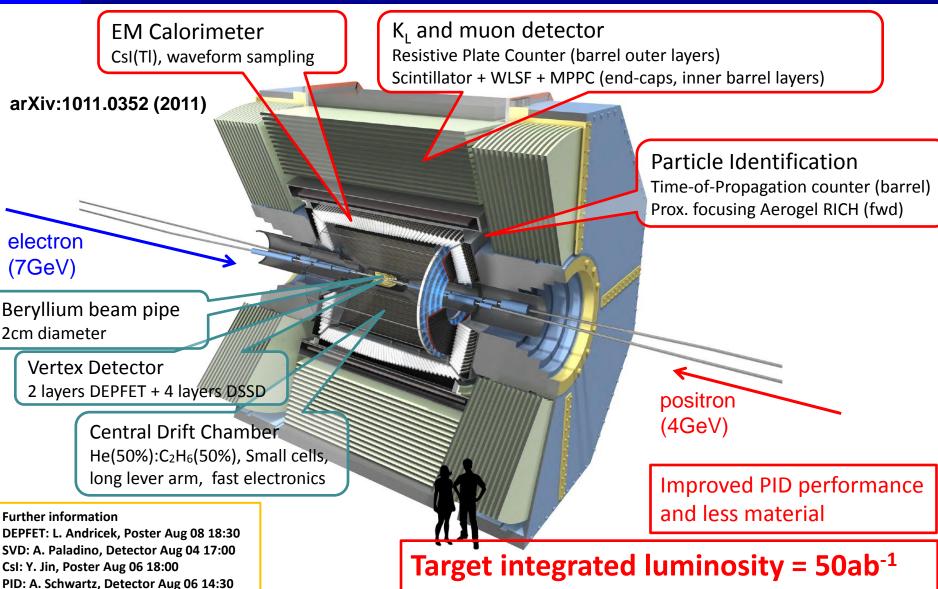
(Initial state radiation + normal tau decay)

Phys. Lett. B 666, 16 (2008)



Br<1.2x10⁻⁷ at 90%C.L.

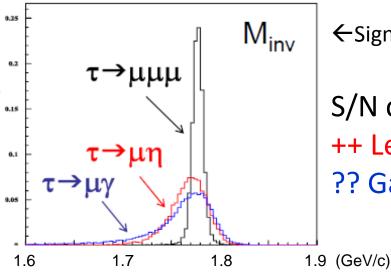
Upper limits on LFV τ decays


- Belle, Babar and LHCb reaching O(10⁻⁸) branching ratio.
- $\tau \rightarrow$ 3 leptons, l+mesons (to charged particles) show better sensitivity because of less background, compared to $\tau \rightarrow I \gamma$.

PID: K. Inami, Poster Aug 06 18:00

CPU: M. Schram, Computing Aug 04 12:50

Belle II experiment



 \rightarrow ~5x10¹⁰ τ pairs

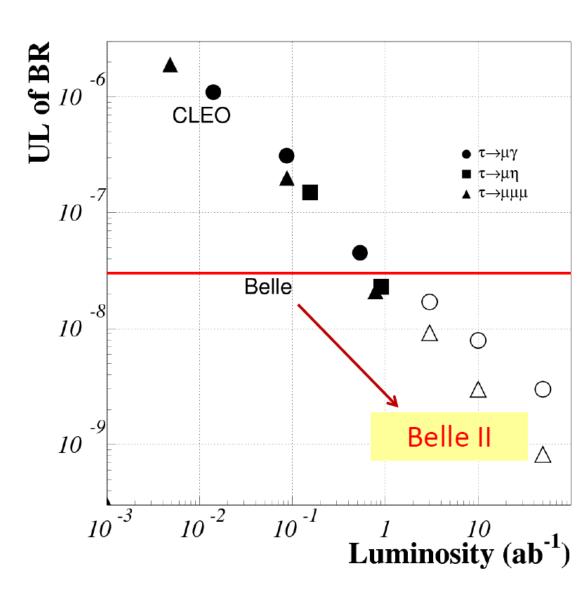
Future prospects at Belle II

- Belle II will collect $N_{\tau\tau} > 10^{10}$
- Branching ratio sensitivity vs. Integrated luminosity
 - $-\tau \rightarrow \mu \gamma, e \gamma; \propto \frac{1}{\sqrt{L}}$
 - Irreducible background; $e^+e^- \rightarrow \tau^+\tau^-\gamma$
 - $-\tau \rightarrow \ell \ell \ell, \ell X^0; \propto \frac{1}{L}$
 - Negligible background by particle ID and mass restriction
- Important for background reduction (S/N improvement)

← Signal MC by Belle simulation

S/N can improve, if E_{γ} resolution improves.

- ++ Less material before EM calorimeter.
- ?? Gamma energy resolution in high beam BG.



Future prospects at Belle II

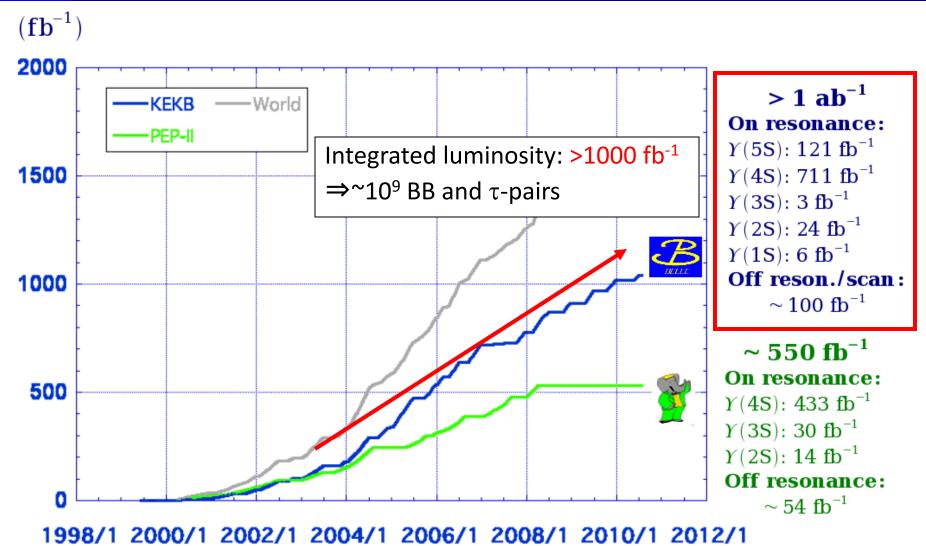
- Sensitivity depends on BG level.
 - Recent improvement of the analysis (BG understanding, intelligent selection)
 - → Improve achievable sensitivity
- $B(\tau \to \mu \mu \mu)^{\sim} O(10^{-10})$

at 50ab⁻¹

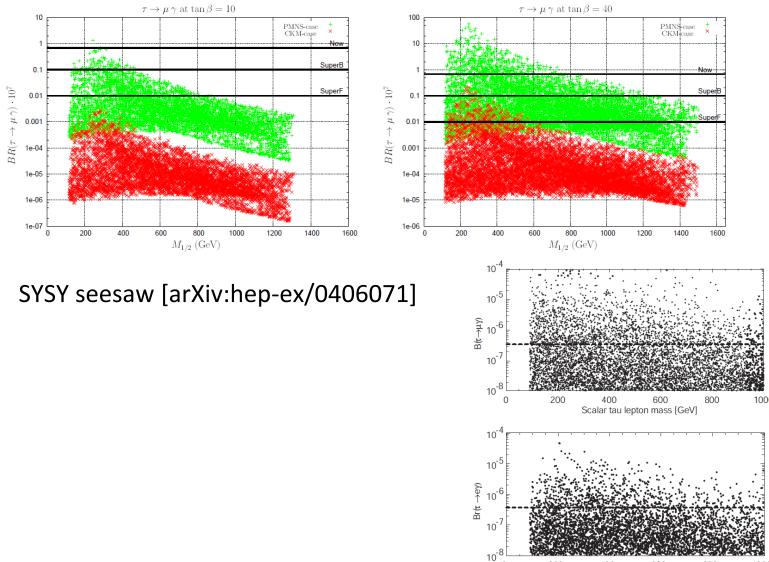
- Improvement of BG reduction is important.
 - Beam BG
 - Signal resolution

- Limiting parameter space of new physics models
 - Reached the region of large $tan\beta$ and small SUSY/Higgs mass

	reference	τ→μγ	τ → μμμ
SM+ v mixing	PRD45(1980)1908, EPJ C8(1999)513	Undetectable	
SM + heavy Maj v_R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(2002)252	10-9	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰
mSUGRA+seesaw	PRD 66(2002)115013	10 ⁻⁷	10-9
SUSY Higgs	PLB 566(2003)217	10-10	10 ⁻⁷


- Previous Belle experiment reached O(10⁻⁸) branching ratio sensitivity, using $^{\sim}10^9 \, \tau$ pair events.
- Belle II experiment will start soon and collect $^{\sim}5x10^{10} \tau$ pairs.
 - LFV sensitivity depends on the statistics.
 - The slope is different due to the background condition.
 - The background free modes, such as $\tau \rightarrow 3$ leptons, can be reached to $O(10^{-10})$ branching ratio sensitivity.
 - τ→I+γ modes will be O(10⁻⁹), highly depends on the background situation.
 - Detector resolution can improve the sensitivity, but the beam background may be an issue.

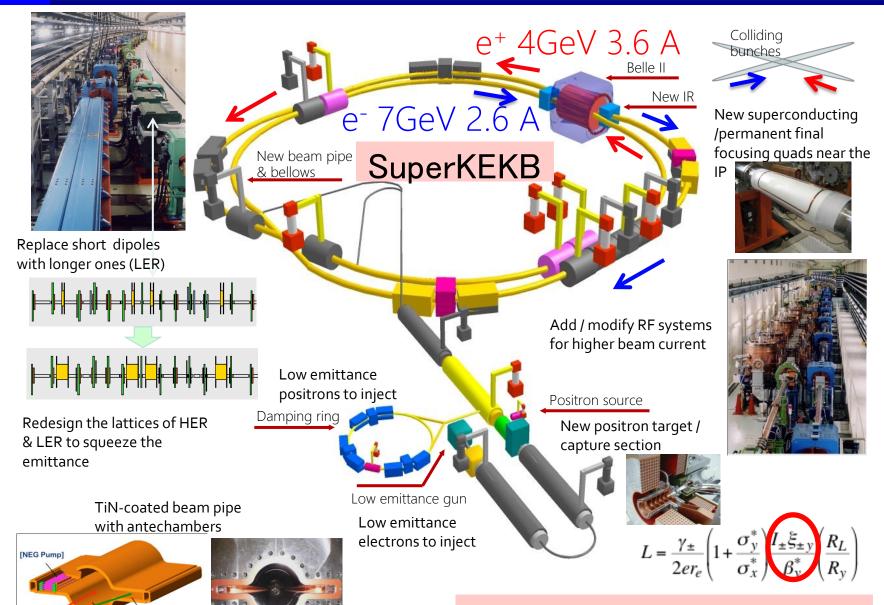
Stay tuned!


Luminosity history at Belle

Belle is finished in 2010/6/30. Belle-II upgrade started. → Analysis with full data sample is on going.

Ele I LFV theories

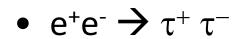
SUSY-SO(10) GUT [L. Calibbi, et.al., Phys. Rev. D74 (2006) 116002]



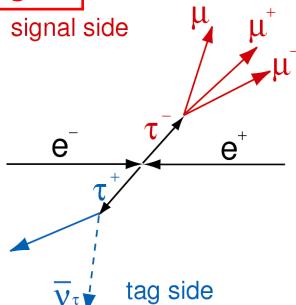
Scalar tau lepton mass [GeV]

SuperKEKB

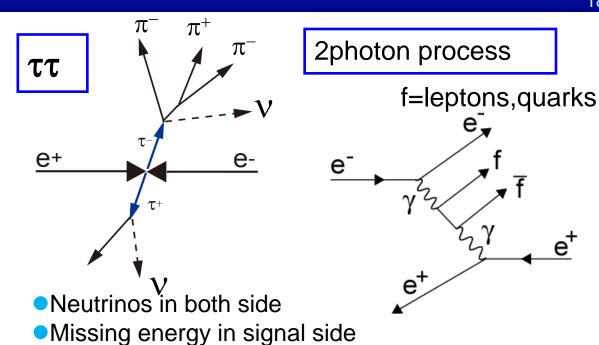
[SR Channel]

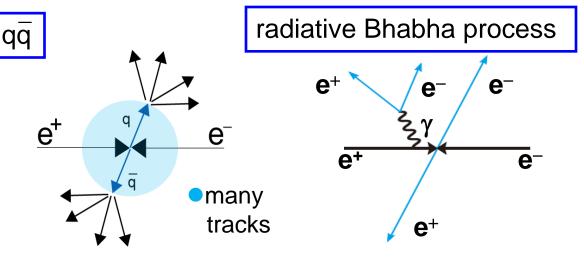

[Beam Channel]

Target: $L = 8x10^{35}/cm^2/s$



LFV τ decays; Signal and Background




1 prong tau decay (BR~85%)

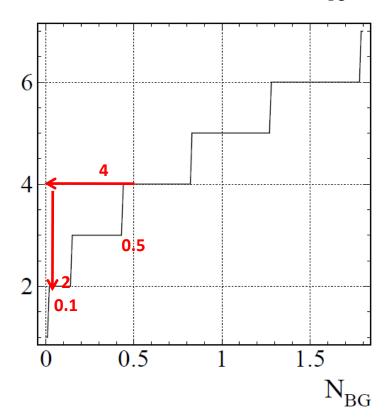
signal

- Neutrino(s) in tag side
- Particle ID
- (Mass of mesons)

Optimization of event selection

 $N_{obs.}^{99}$

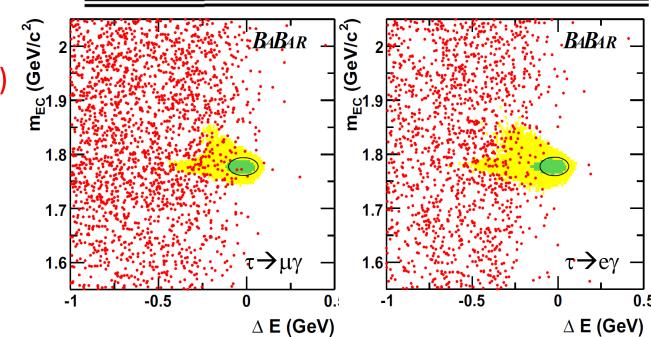
Sensitivity depends on BG level and signal efficiency.


To state 99% C.L. evidence

- Need 2events for N_{BG}~0.1
- Need 4events for N_{BG}~0.5
- \rightarrow Diff. of effective efficiency is $\underline{2}$.

Unless the efficiency drops significantly, we set the criteria to reduce N_{BG} as much as possible.

Number of observed events, $N_{\rm obs.}^{99}$ which we need for 99% CL evidence, as a function of expected BG, $N_{\rm BG}$

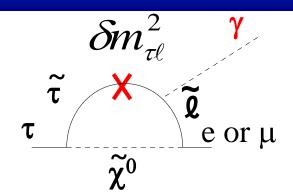

Phys.Rev.Lett.104:021802,2010

- Data: $470 \text{fb}^{-1} + 31 \text{fb}^{-1} @Y(3S) + 15 \text{fb}^{-1} @Y(2S)$
 - $(963 \pm 7) x 10^6 τ$ decays
- New kinematical cuts
 - + Neural Net discri.
 - → Improve S/N
- Dominant BG:

$\tau \rightarrow$	lνν +	radi	ati	on
	(irred	lucib	le	BG)

- $B(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8}$
- $B(\tau \rightarrow e\gamma) < 3.3 \times 10^{-8}$

Decay modes	2σ signal ellipse		ε	UL $(\times 10^{-8})$	
	obs	exp	(%)	obs	\exp
$\tau^{\pm} \to e^{\pm} \gamma$	0	1.6 ± 0.4	3.9 ± 0.3	3.3	9.8
$ \tau^{\pm} \to \mu^{\pm} \gamma $	2	3.6 ± 0.7	6.1 ± 0.5	4.4	8.2



Lepton Flavor Violation in tau decay

SUSY is the most popular candidate among new physics models

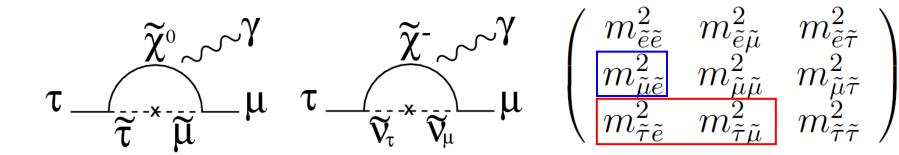
naturally induce LFV at one-loop due to slepton mixing

Higgs

e or u

 $\tau \rightarrow l\gamma$ mode has the largest branching fraction in SUSY-Seesaw (or SUSY-GUT) models

When sleptons are much heavier than weak scale


LFV associated with a neutral Higgs boson (h/H/A)

Higgs coupling is proportional to mass τ $\rightarrow \mu\mu$ or ss (η, η') and so on) are favored and B.R. is enhanced more than that of $\tau \rightarrow \mu\gamma$.

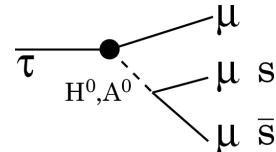
To distinguish which model is favored, all of decay modes are important.

LFV through slepton mixing

- Independent parameter from $\mu \rightarrow e\gamma$
- SUSY seesaw (J.Hisano et. al.,PRD 60 (1999) 055008)

$$\mathcal{B}(\tau \to \mu \gamma) \simeq 3.0 \times 10^{-7} \left(\frac{\tan \beta}{60}\right)^2 \left(\frac{1 \text{ TeV}/c^2}{m_{SUSY}}\right)^4$$

- Achievable BR, if $\tan \beta$ 60, m_{SUSY} 1TeV/c²
- Suppressed, if slepton is heavier than weak scale


- Higgs-mediated MSSM
 - \Box $\tau \rightarrow 3\mu$ (A.Brignole, A.Rossi, PLB 566 (2003) 217)

$$\mathcal{B}(\tau \to 3\mu) \sim 10^{-7} \left(\frac{\tan \beta}{50}\right)^6 \left(\frac{100 \text{ GeV}/c^2}{m_A}\right)^4 \left(\frac{|50\Delta_L|^2 + |50\Delta_R|^2}{10^{-3}}\right)$$

 $\Box \tau \rightarrow \mu \eta$ (M.Sher, PRD 66 (2002) 057301)

$$\mathcal{B}(\tau \to \mu \eta) \simeq 8.4 \times 10^{-7} \left(\frac{\tan \beta}{60}\right)^6 \left(\frac{100 \text{ GeV}/c^2}{m_A}\right)^4$$

- Accessible if, large tan β and small Higgs mass
- MSSM seesaw (E.Arganda, arXiv:0803.2039v1)
 - Br of $\tau \rightarrow \mu \eta$, $\mu \eta'$, μK^+K^- ; O(10⁻⁷)

