

The (i)TOP Detector for the Belle II Experiment

Alan Schwartz University of Cincinnati

38th International Conf. on High Energy Physics
Chicago, Illinois USA
August 6, 2016

- overview
- **♦** optics
- mechanical & electronics
- ◆ first commissioning results
- expected performance

The Belle II Detector

iTOP Principle of Operation

 π and K have different θ_c according to $\cos \theta_c = 1/n\beta$ \Rightarrow different γ hit positions and arrival times. For p=3 GeV/c, $\Delta\theta_c = 0.65$ degrees $\rightarrow \Delta t = 68$ ps per m

A.J. Schwartz

Optical Components: synthetic fused silica (quartz)

Bars: medium to generate Cherenkov radiation. Two bars of dimensions 2 x 45 x 125 cm³ are glued together to make a "long bar" of length 2.5 m.

Mirror: to focus Cherenkov photons onto PMTs, thus improving imaging. Dimensions are 2 x 45 x 10 cm³. Mirrors are spherical with focal length of 3.25 m.

Prism: to expand the image of Cherenkov cone, improving resolution and reducing ambiguities. Dimensions are 2 x 45 x 10 cm³; angle of tilted fact is 18.1 degrees.

Fabricating quartz bars: flatness is critical

Interferograms from metrology report:

S1 peak-to-peak: 5.3 μm (< 6.3 μm) **S2** peak-to-peak: 4.6 μm (< 6.3 μm)

(S1 Surface Flatness)

Quality control: measuring prism tilted face

Angle of tilted face. Specification: $18.07 \pm 0.04 \text{ deg.}$ (±144 arcsecs)

$$heta \ = \ an^{-1} \left[rac{lpha}{n_{
m qtz} \sqrt{1+lpha^2}-1}
ight] \quad ext{ for } lpha \equiv rac{x}{d}$$

Gluing Optics

3 types:

- bar to bar
- bar to prism
- bar to mirror

Alignment and Gluing:

- adjust surfaces positions using laser displacement sensor and micrometers
- adjust surfaces angles using autocollimator and micrometers
- insert shims, tape joint and repeat steps 1, 2
- apply epoxy (EPOTEK 301-2) to joint

Moving Optics to Quartz Bar Box (QBB)

Vacuum-based lifting jig is used to move fully glued optics to QBB assembly table:

QBB Assembly

Quartz Bar Box is built up around optics:

Fixing outer honeycomb panel to side rails with panel preloaded (to load buttons)

Sealing outer honeycomb panel to PEEK frame

top honeycomb panel

Prism Enclosure: provides access for PMTs and readout electronics

Photon Detection: Hamamatsu PMTs

Hamamatsu SL-10 Multi-Channel-Plate PMTs:

- >5-year R&D effort at Nagoya University
- high gain to detect single photons
- excellent timing: TTS < 50 ps
- good QE: 28% on average
- good segmentation: 16 anodes/tube: 5.3 x 5.3 mm²
- works in a 1.5 T magnetic field

- All PMTs tested; those with QE < 24% are rejected
- 32 tubes/module x 16 modules = 512 tubes needed (8192 channels)
- "Conventional" PMTs have lifetimes 0.3-1.8 C/cm² ⇒ will need to be changed @ ~20 ab⁻¹ (44% of tubes). Next geeration (ALD) PMTs are satisfactory.

PMT Module Assembly

Vacuum chuck to align the PMT faces 2
RTV silicon rubber to hold the PMTs

Silicon rubber TSE3032 (before curing) to be filled between the PMTs and the wavelength cut filter

PMT module completed

Front-end electronics

Front-end electronics based on a custom 8-channel waveform-sampling ASIC:

ASICs are mounted in "Carrier boards," and 8 Carriers + controller/HV/connector boards = 1 boardstack:

4 boardstacks per module:

Installing Modules in the Magnet

Installing one of 16 modules into "Roman arch" configuration:

All 16 modules installed:

First commissioning results (data)

Test modules with cosmic rays, using simple scintillator paddle trigger:

(no tracking yet available, but will be very soon)

Both distributions are in reasonable agreement with MC simulations; other slots look similar

Expected Performance I

Monte Carlo simulation: $e^+e^- \rightarrow \overline{c}c$ (generic):

$$\mathcal{L}(K/\pi) > 0.50$$

$$\mathcal{L}(p/\pi) > 0.50$$

Expected Performance II

Monte Carlo simulation: $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^-\pi^+$:

Cut	Efficiency (BGx1)	Fake Rate (BGx1)
K_PIDk > 0.001	98.2%	26.9%
K_PIDk > 0.110	95%	10.9%
K_PIDk > 0.552	90%	5.5%
K_PIDk > 0.835	85%	3.4%
pi_PIDpi > 0.003	99%	34.7%
pi_PIDpi > 0.344	95%	12.1%
pi_PIDpi > 0.827	90%	6.2%
pi_PIDpi > 0.959	85%	4.0%

- A new type of particle identification detector has been built: a Time-of-Propagation counter with imaging. The construction took approximately 18 months.
- The detector is now fully installed in the Belle II solenoid. Electronics are cabled, and detector is being commissioned with cosmic rays.
- We are uncovering issues with interfacing to the data acquisition system, and issues with firmware running in the front-end readout boards. These are being debugged.
- We expect performance similar to or better than that achieved in Belle, but at much higher luminosity and background rates.
- The Belle II experiment is scheduled to take first commissioning data in 2017, and first real data in 2018. All detector systems are (more-or-less) on schedule.

Extra Slides

Principle of Focusing Mirror

Mirror does two tasks:

- parallel rays get focused to a single point
 - ⇒ removes bar thickness
- non-parallel rays are focused to different points
 - ⇒ possibly allows to make a correction for chromatic dispersion.

Limiting issue: chromatic dispersion

$$\left\{ egin{aligned} v &=& rac{c}{n} \end{array}
ight\} egin{aligned} & ext{phase velocity}: & ext{n} &= \sqrt{rac{\epsilon \mu}{\epsilon_0 \mu_0}} \ & ext{group velocity}: & ext{n}_{ ext{g}} > ext{n} \end{aligned}$$

$$n_g(\lambda) \ = \ n(\lambda) - \lambda \left(rac{dn}{d\lambda}
ight)$$

From $\lambda = 300-500$ *nm:*

- n_g ranges from 1.50-1.56; a 4% effect = 4x larger than the 1% difference of $\pi/K \Delta t$
- n ranges from1.46-1.49 (Corning 7980 data sheet)
- ultimate limit to performance of this type of detector (a long TOP counter)

Fabricating quartz bars: metrology report

Final metrology report:

Tolerance	Specification	Measurement	Pass	Fail
S1 Datum A Flatness	≤ 6.3µm	5.31	Х	
S1 Local Flatness over 200mm Area	≤ 1.8µm	Max 0.564	Х	
S2 Flatness	≤ 6.3µm	4.6	Х	
S2 Local Flatness over 200mm Area	≤ 1.8μm	Max 1.01	Х	
S3 Datum B Flatness	≤ 6.3µm	0.48	Х	
S4 Flatness	≤ 6.3µm	0.47	Х	
S5 Datum C Flatness	≤ 25µm	2.47	Х	
S6 Flatness	≤ 25µm	2.753	Х	
S1 Parallel S2	≤ 4 arcsec	1.2	Х	
S1 Perpendicular S3	≤ 20 arcsec	4.0	Х	
S1 Perpendicular S4	≤ 20 arcsec	5.0	Х	
S1 Perpendicular S5	≤ 1 arcmin	0.083	Х	
S1 Perpendicular S6	≤ 1 arcmin	0.083	Х	
S3 Parallel S4	≤ 60µm (10 arcsec)	4.8 arcsec	Х	
S3 Perpendicular S5	≤ 20 arcsec	8.0	Х	
S3 Perpendicular S6	≤ 20 arcsec	6.0	Х	
S5 Parallel S6	≤ 20 arcsec	10.0	Х	
Surface Roughness S1	≤ 5 Å rms	4.1	Х	
Surface Roughness S2	≤ 5 Å rms	4.4	Х	
Surface Roughness S3	≤ 5 Å rms	4.2	Х	
Surface Roughness S4	≤ 5 Å rms	3.65	Х	
Surface Roughness S5	≤ 25 Å rms	9.52	Х	
Surface Roughness S6	≤ 25 Å rms	9.05	Х	
Length	1250 ±0.50mm	1250.3	Х	
Width	450 ±0.15	450.10	Х	
Thickness	20 ±0.10	20.055	Х	

Testing Bars (transmission, internal reflection)

Step a:

Measurement of bulk transmission of bars and coefficient of total internal reflection. (R₀, R₁ calculated via Fresnel equations)

Step b:

Measurement of coefficient of total internal reflection of bars [SLAC-PUB-9735 (2003)]

N is the number of reflections inside bar, Λ is the attenuation length of quartz (>1000m @ λ =530 nm), L is bar length (125 cm), h is bar height (2.0 cm). R_0 and R_1 are measured or calc. via Fresnel eqs.

Gluing buttons to honeycomb panels

Button heights must match quartz profile:

Measuring button heights (must match quartz profile)

Front-end electronics: testing boardstacks

Test PMT channels with laser, record single photon hit times, calculate time difference w/r/t reference pulse, plot residuals w/r/t known time difference:

Residuals (typical):

Testing all boards, excellent yield:

Super-KEKB and Detector schedule

