

STUDIES OF MISSING ENERGY DECAYS OF B-MESONS AT BELLE II

Elisa Manoni - INFN Perugia
on behalf of the Belle II collaboration

supported by **JENNIFER** – Japan and Europe Network for Neutrino and Intensity Frontier Experimental Research – EC grant n.644294

Belle II and New physics searches

Search for new physics (NP)

 Energy frontier: direct production of new particles - limited by beam energy (LHC - ATLAS, CMS) Intensity frontier: new virtual particles in loops/trees transitions, deviation from SM expectations (B factories, LHCb)

- From Belle to Belle II: Factor x40 luminosity → higher data samples + higher rate and radiation damage to detectors from "machine background processes"
- Upgrade of Belle detector and reconstruction algorithm in order to keep same or better performances wrt Belle in higher radiation environment

B meson decays with missing energy: how to

- Clean event environment and well defined initial state.
- Good and efficient reconstruction of decays with neutrals
- → Ideal environment to search for decays with missing energy in the final state
- Full Event interpretation reconstruction algorithm:
 - Multivariate technique to reconstruct the B-tag side through both semileptonic (SL) and hadronic (HAD)
 - Signal specific training technique.
- → x2 in both HAD and SL reconstruction efficiency wrt Belle

$B \rightarrow D^{(*)} \tau v$: theoretical and experimental status

Observable:

$$R(D^{(*)}) \equiv \frac{\Gamma(B \to \bar{D}^{(*)}\tau^+\nu_{\tau})}{\Gamma(B \to \bar{D}^{(*)}\ell^+\nu_{\ell})}$$
 $\ell = e, \mu$

- Very precise theoretical calculation in the SM framework: 3-4% level for R(D)^[rd1], 1% level for R(D*)
- **Experimental world average 4.08** σ away from SM expectations
- τ polarisation measured by Belle [rd3]:

$$P(\tau) = -0.38 \pm 0.5 \, I^{+0.2} I_{-0.16}$$

$B \rightarrow D^{(*)} \tau \nu$: perspectives @ Belle II

- Current measurements are statistically limited, dominant systematic uncertainties from
 - limited signal MC samples → larger at Belle II
 - limited knowledge of dominant bkg (involving soft pions) → dedicated measurement with large data samples feasible at Belle II
- With higher statistics, also study of q²
 distributions, essential to distinguish NP models, feasible
- Extrapolation from existing BaBar and Belle results:

$$\left. \frac{\sigma_{R_D}}{R_D} \right|_{50 {
m ab}^{-1}} = 2.0\% ({
m stat.}) \pm 2.5\% ({
m syst.}),$$

$$\left. \frac{\sigma_{R_{D^*}}}{R_{D^*}} \right|_{50 {
m ab}^{-1}} = 1.0\% ({
m stat.}) \pm 2.0\% ({
m syst.}),$$

$$\left. \sigma_{P_{\tau}(D^*)} \right|_{50 {
m ab}^{-1}} = 0.06 ({
m stat.}) \pm 0.04 ({
m syst.}).$$

$B \rightarrow \tau v$: theoretical and experimental status

SM branching fraction:

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B m_\tau^2}{8\pi} \left[1 - \frac{m_\tau^2}{m_B^2} \right]^2 f_B^2 |V_{ub}|^2 \tau_{B^+}$$

• Using $|Vub|_{excl} = (3.55 \pm 0.12) \times 10^{-3}$, $f_B = (186 \pm 4) \text{ MeV } [tn \, l]$:

$$\mathcal{B}(B \to \tau v) = (0.77 \pm 0.06) \times 10^{-4}$$

World average of BaBar and Belle measurements using both semileptonic and hadronic tag [tn2]:

$$\mathcal{Z}(B \to) = (1.06 \pm 0.19) \times 10^{-4}$$

- $= 5\sigma$ significance exceeded combining the two experiments
- consistent with SM expectation at 2 level
- Statistically limited , dominant systematic effects
 - data/MC disagreement and efficiency estimations
 - signal and bkg parameterisation in final fit

(partly) statistical in origin

B-tu: perspectives @ Belle II

- Analysis on Belle II Full simulation using hadronic B reconstruction
 - signal and background yield extracted from ML fit to extra neutral energy
- Comparison with hadronic Belle analysis:

$E_{ m ECL}$		$< 0.25 \mathrm{GeV}$
	# background events	1348
Belle II	# signal events	136
	signal efficiency (‰)	1.6
	# background events	365
Belle	# signal events	60
	signal efficiency (‰)	0.7

I ab-I equivalent statistics

Combination with Belle SL tag analysis [tn1], and extrapolation at full Belle II statistics:

	Integrated Luminosity (ab ⁻¹)	50
	statistical uncertainty (%)	4.1
hadronic tag	systematic uncertainty (%)	4.6
	total uncertainty (%)	6.2
semileptonic tag	statistical uncertainty (%)	2.7
	systematic uncertainty (%)	4.5
	total uncertainty (%)	5.3

$B \rightarrow K^{(*)} vv$: theoretical and experimental status

- Flavour changing neutral current, prohibited at tree level in the SM
 - NP contribution (from new mediators or sources of missing energy) may be comparable to SM ones
 - free of uncertain long-distant hadronic effects, theoretically clean
 - Experimental searches from BaBar and Belle on both HAD and SL recoil^[knn2]
 - no signal evidence, UL less than I order of magnitude away from SM predictions for K* channels

B-K(*)vv: robustness against machine background

- Analysis on Belle II Full simulation using hadronic B reconstruction using $K^{*+} \to K\pi^0$ to establish machine background impact
- Simple cut-and-count analysis, signal efficiency and bkg yield estimanted in extra neutral energy signal region
- nominal machine bkg (BGxI) and machine bkg-free (BGx0) simulated samples analysed

 Negligible impact of machine background both in terms of variables shape and signal significance

l ab ⁻¹ equivalent statistics				
	"BGx1"			
N_{bkg}	6415 ± 80	3678 ± 61		
ε (10 ⁻⁴)	10.3 ± 0.3	5.38 ± 0.23		
$N_{sig}/\sqrt{N_{bkg}}$	0.16	0.15		
$UL (10^{-4})$	2.6	3.8		

Detector performances and reconstruction proves to be robust against machine background

$B \rightarrow K^{(*)} \nu \nu$: perspectives @ Belle II

- Extrapolation on full Belle II statistics on Belle HAD and SL analyses, assuming two times better B_{tag} reconstruction efficiency:
 - observation with about 18 ab-1
 - precision on the branching fraction at 50 ab⁻¹:

	stat only	total
B+ → K+ <i>υυ</i>	9,5%	10,7%
B+ → K*+υυ	7,9%	9,3%
B+ → K*0 <i>vv</i>	8,2%	9,6%

- Fraction of longitudinally polarized K* may
- be measured, ~20% precision with full statistics
- Robustness against machine background proved,
 predicted precision can be exceeded by improving
 analysis strategy

Summary

- Belle II unique or very competitive environment to study B decays with missing energy, sensitive to indirect NP effects
- x40 luminosity (and much higher machine background) wrt first generation B-factories
- Belle II full simulation studies proved the detector performances and the reconstruction algorithms to be robust against simulated machine background
 - measurements on machine background rates and spectra during phase I (2016) and phase II (starting Nov. 2018) operation phases
- Improvements in analysis strategy and larger data sample will allow to approach SM prediction (B $\to K^{(*)}vv$) or further investigate deviation from/consistency with the SM predictions (B $\to \tau v$ and B $\to D^{(*)}\tau v$)
- B2TIP report: Belle II detector, simulation, software, analysis tools, physics program (https://confluence.desy.de/display/BI/B2TiP+ReportStatus), to be published in 2017
- Phase III operation (Full detector) starting end 2018

Phase III

READY TO GO!

subdetectors, except for the innermost vertex

detector, are in place. The next step is to

References

[rd1] HPQCD 2015, FNAL/MILC 2015

[rd2] S. Fajfer et al. 2012

[rd3] Belle collaboration, Phys.Rev.Lett. 118 (2017) no.21, 211801

[tn I] C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

[tn2] Belle collaboration, Phys.Rev. D92 (2015) no.5, 051102; Belle collaboration, Phys.Rev.Lett. 110 (2013) no.13, 13180; BaBar collaboration, Phys.Rev. D88 (2013) no.3, 031102; BaBar collaboration, Phys. Rev.D 77, 011107(R) (2008)

[knn1] BELLE2-MEMO-2016-007, Buras et al. JHEP 1502 (2015) 184

[knn2] Belle collaboration, arXiv:1702.03224; Belle collaboration, Phys.Rev. D87 (2013) no.11, 11103; BaBar collaboration, Phys.Rev. D87 (2013) no.11, 112005

BACK-UP SLIDES

SuperKEKB Commissioning

Phase I (2016)

- No Belle II
- · Circulate both beams; no collisions
- Tune accelerator optics, etc.
- Vacuum scrub
- Beam studies

Phase II (2018)

- First collisions
- Develop beam abort
- Tune accelerator optics, etc. (nanobeam)
- Beam studies

May 29 2017

G. Finocchiaro - Belle II stat

Phase I (no collisions)

Touschek scattering:

- intra-bunch scattering process
- dominant with highly compressed beams
- · 20 times higher

Beam-gas scattering:

 Bremsstrahlung (negligible) & Coulomb interactions (up to 100 times higher) with residual gas atoms & molecules

Synchrotron radiation:

 emission of photons by charged particles (e+e-) when deflected in B-field

Phase 2 (collisions)

Radiative Bhabha process:

photon emission prior or after

Bhabha scattering
interaction with iron in the magnets
leads to neutron background

Two photon process:

- very low momentum e⁺e⁻ pairs via e⁺e⁻—>e⁺e⁻e⁺e⁻
- increased hit occupancy in inner detectors

Injection Background:

· covered later in the talk

Belle II detector (I)

- Detector an reconstruction algorithm improvements results in
 - Fast signal shaping and waveform fit of e.m. calorimeter signals to preserve excellent energy resolution in high-pileup environment
 - Increase Ks efficiency (by ~30%)
 - Improve IP and secondary vertex resolution (~factor 2)
 - Better K/ π separation (π fake rate decreases by ~2.5)
 - Improve π^0 reconstruction

FEI performances

Table 5: Tag-side efficiency: Number of correctly reconstructed tag-side B mesons divided by the total number of $\Upsilon(4S)$ events. The presented efficiencies depend on the used BASF2 release (7.2), MC campaign (MC 7) and FEI training configuration.

Tag	FR ² @ Belle	FEI @ Belle MC	FEI @ Belle II MC
Hadronic B^+	0.28%	0.49~%	0.61%
Semileptonic B^+	0.67%	1.42~%	1.45~%
Hadronic B^+0	0.18%	0.33%	0.34~%
Semileptonic B^0	0.63%	1.33%	1.25~%

$B \to D(*) \tau v$: theoretical and experimental status

Exp.	Tag method	τ^- decays	Observables	Fit variables
Belle [37]	Untagged	$e^- \nu_{ au} \bar{\nu}_e, \pi \bar{\nu}_{ au}$	$\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})$	$M_{ m bc}^{ m comp}$
Belle [38]	Untagged	$\ell^- u_ auar u_\ell,\piar u_ au$	$\mathcal{B}(B^- \to D^{(*)0} \tau^- \bar{\nu}_{\tau})$	$M_{ m bc}^{ m comp}$ and p_{D^0}
Belle [26]	Hadronic	$\ell^- u_ auar u_\ell$	$R_D,R_{D^*},q^2, p_\ell^* $	$M_{ m miss}^2$ and $\mathcal{O}_{NB}\dagger$
Belle [39]	Semileptonic	$\ell^- u_ auar u_\ell$	$R_{D^*}, \ p_\ell^* \ p_{D^*}^* $	E_{ECL} and \mathcal{O}'_{NB} ‡
Belle [40]	Hadronic	$h^- u_ au$	$R_{D^*}, P_{\tau}(D^*)$	$E_{ m ECL}$ and $\cos heta_{ m hel}$
BaBar [25, 41]	Hadronic	$\ell^- u_ auar u_\ell$	R_D, R_{D^*}, q^2	$M_{ m miss}^2$ and p_ℓ

Table 7: Summary of experimental measurements of semitauonic B decays. † Mainly based on E_{ECL} . ‡ Mainly based on $\cos \theta_{B-D^*\ell}$: further description in the text.

	R_D	R_{D^*}	Correlation
BaBar	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$	-0.45/-0.07/-0.27
Belle (had. tag, $\tau^- \rightarrow$	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$	-0.56/-0.11/-0.49
$\ell^-ar u_\ell u_ au)$			
Belle (sl tag)	NA	$0.302 \pm 0.030 \pm 0.011$	NA
LHCb	NA	$0.336 \pm 0.027 \pm 0.030$	NA
Belle (had. tag, $\tau^- \rightarrow$	NA	$0.270 \pm 0.035^{+0.028}_{-0.025}$	NA
$h^- u_ au)$			
Average	$0.397 \pm 0.040 \pm 0.028$	$0.310 \pm 0.015 \pm 0.008$	-0.23

Table 8: Measurements of $R_{D^{(*)}}$ by Babar, Belle and LHCb. The averages presented are performed by HFlav [8]. The correlation column list the statistical, systematic and total correlations respectively.