Searches of light dark matter at e⁺e⁻ accelerators

Chunhua LI
On behalf of the Belle II collaboration
Exploring the Dark Universe
July 23-29, Quy Nhon, Vietnam

Outline:

- Introduction
- SuperKEKB&Belle II Detector
- Searches of light dark matter at Belle II
- Summary

Introduction

- Search for light dark matter at low-energy e^+e^- colliders (B-factories ~10 GeV)
 - High luminosity \Rightarrow large dataset
 - Coupling to SM particles ⇒ produce in experiment
 - Mass scale MeV/ $c^2 \sim \text{GeV}/c^2 \Rightarrow$ within the collision energy region
- \bullet Production at e^+e^- colliders
 - Direct production from the e⁺e⁻ annihilation e.g. $e^+e^- \rightarrow \gamma A'$
 - Light mediator A' (dark photon) coupling to SM photon via kinetic mixing with the mixing strength ϵ
 - $m_{\chi} < 1/2 \ m_{A'}$, invisible decay $A' \rightarrow \chi \overline{\chi}$
 - $m_{\chi} > 1/2 \text{ m}_{A'}$, visible decay $A' \rightarrow l^+ l^-$

- Resonant production e.g the tree level decay Y(1S)—invisible, the loop level rare decay e.g. $B \rightarrow K$ +invisible
- Other dark sectors searches at e^+e^- colliders e.g. Axion Like Particles (ALPs), dark Higgs

Introduction

$e^+e^- \rightarrow \gamma A', A' \rightarrow \text{invisible}$

Search for a bump in the photon recoil mass

BaBar

- 53 fb⁻¹ data
- single photon trigger E* >1 or 2 GeV
- fit to the missing mass square of photon
- no evidence were found
- give the upper limit of the mixing strength at 90% C.L. in the mass region $m_{A'} \le 8$ GeV
- arXiv: 1702.03327

A representative fit $m_{A'} = 6.21 \text{ GeV}$

Introduction

$$e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-/\mu^+\mu^-$$

Search for a bump in the invariant mass spectrum of lepton pair

SuperKEKB

An asymmetric electron-positron collider at KEK, Japan e⁺~ 4GeV e⁻~ 7GeV

Phase 1

- Done (2016)
- Beam commissioning

Phase 2

- Feb. 2018
- w/o vertex detector
- Beam background measurement
- 20±20 fb⁻¹

Phase 3

- End of 2018
- w/ all detectors
- Physics running

SuperKEKB

$$L_{peak} = 8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1} (40 \times KEKB)$$

SuperKEKB			90 0.0881/0. 0807		80x10 ³⁴
KEKB	LER/HER	LER/HER		I (A) LER/HER 1.6/1.2	$\frac{L}{(cm^{-2}s^{-1})}$ 2.1x10 ³⁴

Belle II Detector

Belle II Detector

 a series of upgrades is implemented at Belle II to cope with high background and improve detector performance

Tracking IP Resolution with VXD

Resolution of ECL clusters

Belle II Collaboration

- **Colleagues**
- **Institutions**
- **Countries/regions**

Belle II Roll-in

Belle II detector rolled in to the interaction region of SuperKEKB on April 11, 2017

Cosmic Ray Data Taking

- Integration of readout system of sub detectors is in progress
- Cosmic ray data taking is on going
 - Magnetic field: 1.5 T
 - Central draft chamber (CDC)
 - EM Calorimeter (ECL)
 - PID detectors (TOP, ARICH will join in soon)
 - KL and muon detector (KLM)
 - Trigger system

Belle II Beam Background

- Due to the low final state particle multiplicity of dark matter processes, background from beams become a major challenge.
- Total background is significantly higher than Belle

Touschek effect

- Intra bunch scattering
- Rate ∝ the inverse beam size, number of bunches et.al
- Suppressed with movable collimators

Beam gas

- Coulomb and bremsstrahlung scattering by the residual gas atoms
- Rate ∝ the vacuum level and the beam current

Synchrotron radiation

Physical backgrounds

- Bhabha ee \rightarrow (γ)ee
- Two photon: ee→eeee
- Rate ∝ luminosity

Belle II Trigger System

A well-designed trigger system is essential for the search of dark matters

Scheme: Hardware trigger + Software trigger

- Level 1 (L1): hardware based, readout rate: 30 kHz
- High Level Trigger (HLT): software based, readout rate: 10 kHz
- The trigger system is entirely new with a vastly expanded search scope

L1 CDC Trigger

- 3D Tracking
 - Suppress background
 - 3D Tracking direction and momentum

L1 ECL Trigger

- 3D Bhabha-veto logic
 - 3D cluster position information
 - Cluster energy requirements

L1 Track-Cluster Match

Belle II Trigger System

- High Level Trigger
 - Operating offline reconstruction algorithms as a component of DAQ
 - Suppress event rate to 10 kHz for the offline storage
 - Strong computing power to cope with high event rate
 - 1500 cpu at Phase 2, and 6000 cpu at Phase 3 with target luminosity
- Trigger menus at L1 and HLT
 - High Multiplicity
 - BB
 - continuum: u, d, s, c
 - Low Multiplicity
 - τ physics
 - dark matter searches
 - ISR processes for precision measurement
 - Pre-scaled samples for luminosity and performance study

- Single photon in detector
- Search for a bump in the photon recoil mass spectrum

- Dominant backgrounds are QED process with only one photon is detected
- Large cross section in detector acceptance
 - $\sigma(ee \rightarrow ee(\gamma)) \sim 74 \text{ nb}$
 - $\sigma(ee \rightarrow \gamma \gamma(\gamma)) \sim 3 \text{ nb}$
- Dedicated single photon trigger with threshold 1 GeV and 2 GeV
 - exclude the ECL crystals close to beam pipe to suppress the background
 - further tuning is necessary at high luminosity due to the increasing background

	YY	Bhabha		Total Preliminary simulation	
		both e have θ* > 1°	one e has $\theta^* < 1^\circ$	inary Siri	
1 GeV* E*>1 GeV and second cluster E* < 0.2 GeV	0.2 nb	0.4 nb	1.6 nb	2.2 nb rate@1/40 lumi: 0.05 kHz rate@final lumi.: 1.76 kHz	
2 GeV* E*>2 GeV and eclbhabhaveto and bhabhveto	0.5 nb	2.9 nb	0.1 nb	3.5 nb rate@1/40 lumi: 0.08 kHz rate@final lumi.: 2.80 kHz	

Basic event selection

- $E^* > 1.8 \text{ GeV}$
- No extra ECL clusters with E*> 0.1 GeV
- No tracks with Pt > 0.2 GeV/c
- No KLM clusters out of 25° cone of ECL Cluster
- Energy dependent polar angle requirement

Dominant background

 $ee(\gamma)$, $\gamma\gamma(\gamma)$ with particles escape from the inefficient ECL regions

200 µm gaps between some endcap crystals that are projective to IP

Projection of Belle II at Phase 2 & 3

Search for A' decaying to leptons

- \bullet $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow e^+e^-/\mu^+\mu^-$
- Main backgrounds: QED processes $e^+e^- \rightarrow \gamma e^+e^-/\mu^+\mu^-$

projections made based on BaBar's measurement

- Y(1S) invisible decay
 - In SM, B(Y(1S) \rightarrow vv) \approx 10⁻⁵ (PLB 441(1998) 419-424)
 - If low mass dark matter less than b quark mass exist, $Y(1S) \rightarrow invisible$ is enhanced
 - B<3x10⁻⁴ at 90% C.L. by Babar: PRL 103(2009) 251801, other measurements by Belle: PRL 98(2007) 132001, CLEO: (PRD 75(2007) 031104)
- Production at Belle II
 - $e^+e^- \rightarrow Y(2,3S) \rightarrow \pi^+\pi^-Y(1S), Y(1S) \rightarrow \text{invisible}$
 - Two slow charged π in the final state
- Dedicated trigger
 - Trigger with low threshold of transverse momentum is needed
 - Study is in progress

• Two photon process $e^+e^- \rightarrow e^+e^- X$, where e^+e^- are out of detector, and $X = \pi^+\pi^-/\mu^+\mu^-$,

Search for Axion Like Particle (ALP)

- ALPs are pseudo-scalars and couple to bosons
- Search for ALP at Belle II via its coupling to $\gamma\gamma$

Signature in detector

- $m_a > 500 \text{ MeV/c}^2$
 - three photons are well separated
 - detect 3γ
- Low mass region
 - two decay photons overlap or merge
 - detect 2γ
- ALPs fly out of detector
 - detect 1γ

Search for Axion Like Particle (ALP)

ALP coupling to two photons only.

T. Ferber, EPS-HEP, Venice: "Dark Sector Searches at Belle II" (July 2017)

Search for dark higgs

- Dark photon could arise from Higgs-strahlung process $e^+e^- \rightarrow A'h'$, $h' \rightarrow A'A'$
 - Six leptons or hadrons in the final state
 - Clear process with few background

Belle: PRL 114. 211801(2015)

Summary

- Belle II is a good place for the searching of light dark sectors.
 - High luminosity $\sim 8 \times 10^{35}$ cm⁻¹ s⁻¹ at Phase 3, $\sim 2 \times 10^{34}$ cm⁻¹ s⁻¹ at Phase 2
 - Upgrade detectors e.g. better tracking vertex resolution, better energy resolution, improved trigger schemes
 - Improved reconstruction software
- Start commissioning w/o VXD on Feb. 2017 (Phase 2)
 - 20±20 fb⁻¹ physics data
 - Belle II will provide the strong constraint on dark photons in the GeV mass and ALPs searching even with phase 2 data
- Physics running with all detectors (Phase 3) start at the end of 2018, aim to collect 50ab data by 2025