

The Belle II Experiment

Andrzej Bożek IFJ Kraków

19.08.2017 6th International Conference on New Frontiers in Physics (ICNFP 2017)

Outline

- B factories
- SuperKEKB collider and Belle II detector
- Belle II physics program
- · Status and schedule

Belle II @ SuperKEKB

Belle II experiment at SuperKEKB collider – new facility for search of physics beyond the Standard Model (New Physics) in B, charm and τ decays

SuperKEKB – major upgrade of the KEKB B factory at KEK (Tsukuba, Japan)

$$e^+e^- \rightarrow \Upsilon(4S) \rightarrow \bar{B}B$$

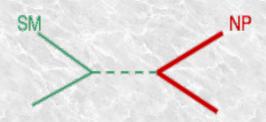
$$L_{design} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

$$E(e^{+}) = 4 \text{ GeV}, \ E(e^{-}) = 7 \text{ GeV}$$

Belle II – upgraded Belle detector

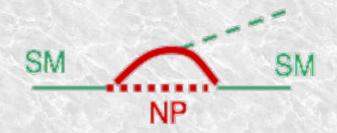
overall Integrated luminosity ~ 50 ab⁻¹

55 billion BB pairs, 47 billion τ + τ pairs, 65 billion cc (from e te → cc)


~ 50 x Belle data

Searching for New Physics (NP)

Two approaches:


1. Energy frontier:

direct production of the new particles (limited by the beam energy)
LHC (Atlas, CMS)

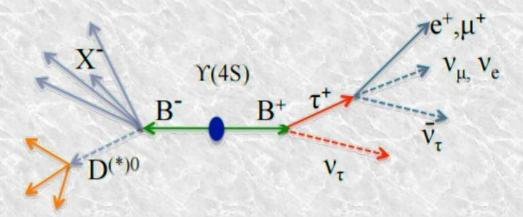
2. Flavour frontier:

indirectly reveal NP virtual particles
in loops – can probe the energies > 10 TeV
("B factories", LHCb)

Complementarity:

If NP is found in direct searches, it is reasonable to expect NP effects in B, D and τ decays.

- Flavour structure of New Physics?
- CP violation in New Physics?


Unique features of B factory

$$e^+e^- \rightarrow Y(4S) \rightarrow BB$$

Two B mesons without additional particles are produced via $\Upsilon(4S)$ resonance

ADVANTAGES:

reconstruction of one B meson (B_{tag}) constrains the 4-momentum and flavour of the other (B_{sig})

hadronic tagging: B_{tag} is fully reconstructed in numerous hadronic decays **semileptonic tagging:** B_{tag} is partially reconstructed in semileptonic decays

Useful in:

- 1. inclusive measurements
- 2. reconstruction of missing energy channels

ex:
$$B \rightarrow D^{(*)} \tau \nu$$
, $B \rightarrow \tau \nu$

Unique features of B factory

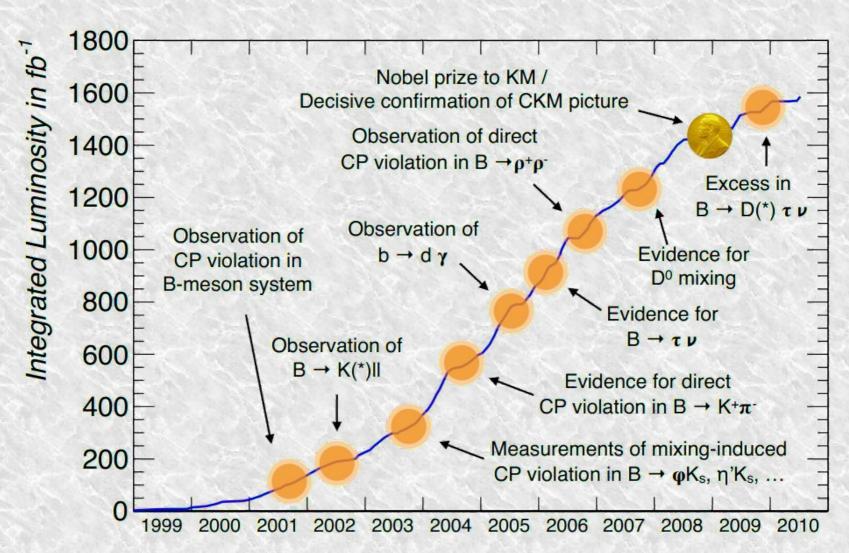
Clear experimental environment – low background and thus easier reconstruction of decays with γ , π^0 , ρ , η , η' .

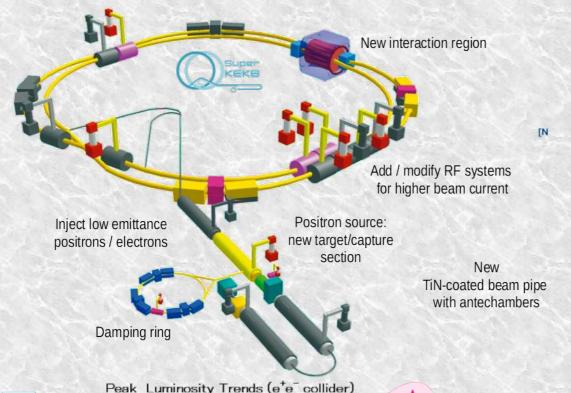
low track multiplicities and detector occupancy give:

- high B, D, τ and quarkonia reconstruction efficiency
- low trigger bias.

corrections and systematic uncertainties are substantially reduced in many types of measurements, e.g. Dalitz plot analyses, dark sector searches...

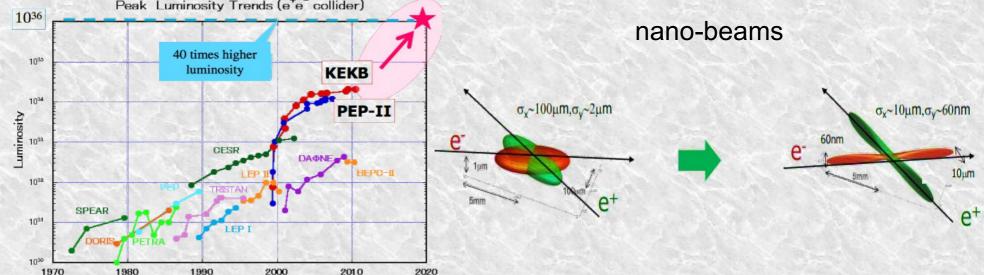
beam energy can be adjusted for several resonances $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, $\Upsilon(5S)$, $\Upsilon(6S)$


B Factories achievements



B Factories achievements

The previous generation of B factories achieved a great success in B (charm, т) physics studies and explored possible new physics

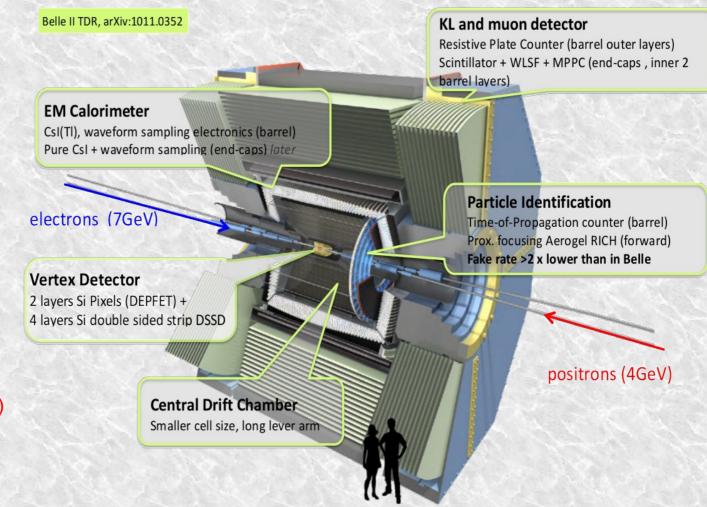


SuperKEKB et ecollider

Year

- instantaneous luminosity: $L = 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-2}$
- goal int. luminosity
 50ab⁻¹ by 2025
- New technologies: nano beam scheme

Belle II detector


Better hermeticity by adding K/π ID to the endcaps

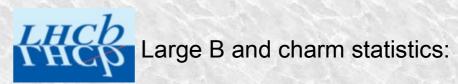
Increase K_s efficiency (by ~30%)

Improve IP and secondary vertex resolution (~factor of 2)

Better K/ π separation (π fake rate decreases by ~2.5)

Improve π⁰ reconstruction

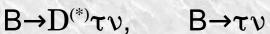
Must be capable of handling higher beam-related background


Tests with beams and cosmics are ongoing

Belle II is complementary to the LHC indirect searches:

Well defined initial state

- neutral final states: $\pi^0\pi^0$, $K_s\pi^0(\gamma)$, $K_sK_sK_s$
- final states with missing energy: τv , $D^{(*)} \tau v$
- inclusive modes, e.g. $B \rightarrow X_s \gamma$, $B \rightarrow X_s l^+ l^-$


Specializes in (very) rare decays to clean final states: $B \rightarrow K^* \mu \mu$, $B \rightarrow \mu \mu$ and hadronic B decays into charged states

not only complementary but also... competitive

Observables	Belle Belle II $(2015) 50 ab^{-1} 50$ $70\%@\Upsilon(4S), ab^{-1}@$ $improved K_S$		No. and No.	LHCb			
	$(\sigma_{ m stat},\sigma_{ m sys})$	$(\sigma_{ m stat},\sigma_{ m sys})$	$(\sigma_{ m stat},\sigma_{ m sys})$	$(\sigma_{\mathrm{stat}}, \sigma_{\mathrm{sys}})$	$(\sigma_{ m stat},\sigma_{ m sys})$		
$\frac{1}{\sin(2\phi_1) \text{ in } B \to J/\psi K_S}$		$\frac{(\sigma_{\text{stat}}, \sigma_{\text{sys}})}{(0.003, 0.007)}$	$\frac{(\sigma_{\rm stat}, \sigma_{\rm sys})}{(0.007)}$	$\frac{(\sigma_{\text{stat}}, \sigma_{\text{sys}})}{(0.035, 0.020)}$	$\frac{(\sigma_{\text{stat}}, \sigma_{\text{sys}})}{(0.012, 0.007\#)}$		
$\frac{1}{\sin(2\phi_1) \text{ in } B \to J/\psi K_S}$ $\sin(2\phi_1) \text{ in } B \to \phi K_S$							

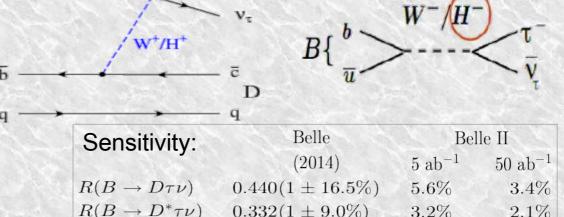
B

Leptonic and semileptonic decays

arXiv:1507.03233

arXiv:hep-ex/1503.05613

Phys. Rev. Lett.99(2007) 191807. Phys. Rev. D82(2010) 072005.

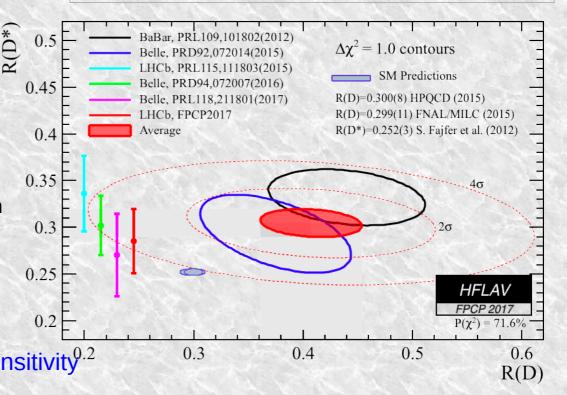

sensitive to charged scalars
 (ex. charged Higgs)
 ▶ BF modification

 $B \rightarrow D^{(*)} \tau \nu$ is sensitive to the tensor operator

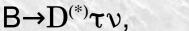
$$\mathcal{R}(D^{(*)}) = rac{\mathcal{B}(\overline{B}
ightarrow D^{(*)} au
u)}{\mathcal{B}(\overline{B}
ightarrow D^{(*)} \ell
u)}$$

- lepton universality test
- the world average value gives 4σ deviation from SM at the moment
- Belle II can reach 3% sensitivity for R(D(*)) at 50 at⁻¹

+ Belle II allows for the measurements of τ and D^* polarization with good sensitivity $^{0.2}$



 $96(1 \pm 27\%)$


10%

5%

 $\mathcal{B}(B \to \tau \nu)$ [10⁻⁶]

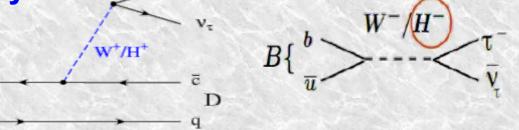
Leptonic and semileptonic decays

 $B \rightarrow \tau \nu$

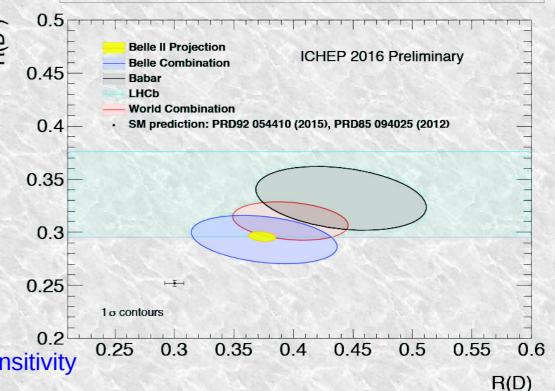
arXiv:1507.03233

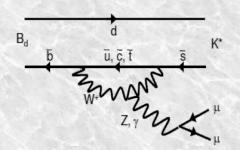
arXiv:hep-ex/1503.05613

Phys. Rev. Lett.99(2007) 191807. Phys. Rev. D82(2010) 072005.


sensitive to charged scalars
 (ex. charged Higgs)
 ▶ BF modification

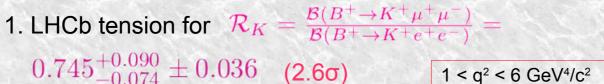
 $B \rightarrow D^{(*)} \tau \nu$ is sensitive to the tensor operator

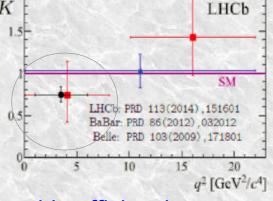

$$\mathcal{R}(D^{(*)}) = rac{\mathcal{B}(\overline{B}
ightarrow D^{(*)} au
u)}{\mathcal{B}(\overline{B}
ightarrow D^{(*)} au
u)}$$


- lepton universality test
- the world average value gives 4σ deviation from SM at the moment
- Belle II can reach 3% sensitivity for R(D(*)) at 50 at-1

+ Belle II allows for the measurements 0.2^{-1} of τ and D* polarization with good sensitivity

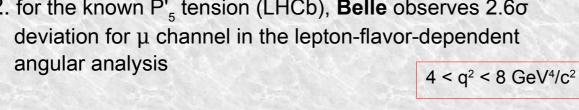
Sensitivity:	Belle	Belle II		
Constantey.	(2014)	$5~{\rm ab^{-1}}$	$50 {\rm \ ab^{-1}}$	
$R(B \to D au u)$	$0.440(1 \pm 16.5\%)$	5.6%	3.4%	
$R(B \to D^* \tau \nu)$	$0.332(1 \pm 9.0\%)$	3.2%	2.1%	
$\mathcal{B}(B \to \tau \nu) \ [10^{-}$	$96(1 \pm 27\%)$	10%	5%	



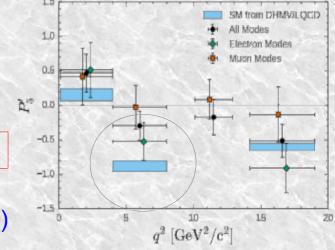

FCNC semileptonic $b \rightarrow s$ Il decays

Discrepancies in observables versus the invariant ◆LHCb —BaBar →Belle

dilepton mass squared (q2)


 $1 < q^2 < 6 \text{ GeV}^4/c^2$

---> Belle II can handle electron and muon modes with comparable efficiencies, for wide q² region


2. for the known P'₅ tension (LHCb), **Belle** observes 2.6σ

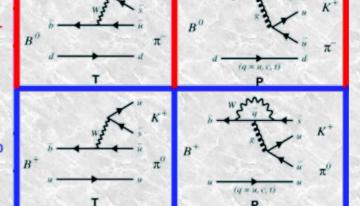
 $4 < q^2 < 8 \text{ GeV}^4/c^2$

---> Belle II can do:

- isospin comparison of K*+ and K*0 (or the ground K states)
- inclusive $b \rightarrow X_s ll$ studies (less theoretical uncertainties)

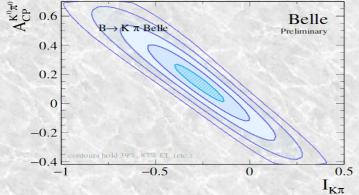
competitive to LHCb!

Direct CP violation in B→Kπ decay:


puzzling tension between SM prediction and measurement:

$$\Delta A \equiv A_{CP}^{\mathrm{B}^0 \to K^+ \pi^-} - A_{CP}^{\mathrm{B}^+ \to K^+ \pi^0} =$$

$$= -0.122 \pm 0.022 \text{ (HFAG 2013)} \text{ (40)}$$

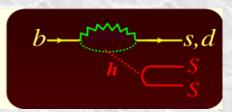

 $\Delta A \approx 0$ in Standard Model, but may be changed:

- due to neglected diagrams
- NP effects

Model independent sume rule to test SM

$$A_{CP}^{K^+\pi^-} + A_{CP}^{K^0\pi^+} \frac{\mathcal{B}(B^+ \to K^0\pi^+)\tau_{B^0}}{\mathcal{B}(B^0 \to K^+\pi^-)\tau_{B^+}} = A_{CP}^{K^+\pi^0} \frac{2}{\mathcal{B}(B^0 \to K^+\pi^0)\tau_{B^0}} \underbrace{A_{CP}^{K^0\pi^0} \frac{2}{\mathcal{B}(B^0 \to K^0\pi^0)}}_{\mathcal{B}(B^0 \to K^+\pi^-)\tau_{B^+}} \underbrace{A_{CP}^{K^0\pi^0} \frac{2}{\mathcal{B}(B^0 \to K^0\pi^0)}}_{\mathcal{B}(B^0 \to K^+\pi^-)}$$
 M. Gronau, PLB 627 (2005) 82, D. Atwood, A. Soni, PRD 58 (1998) 036005

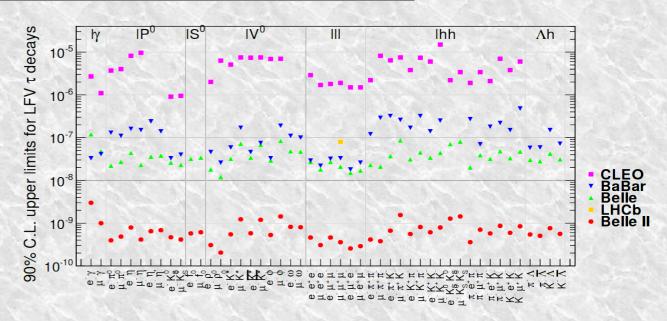

Neutral final states are crucial !!!


Belle II can measure A(B→K⁰pi⁰) from time-dep. analyses with uncertainty ~ 4%

Electroweak decays with neutrinos $b\rightarrow d(s)vv$

Missing energy modes: $B \rightarrow h^{(*)}vv$

 possible window to light dark matter, not accessible in direct searches

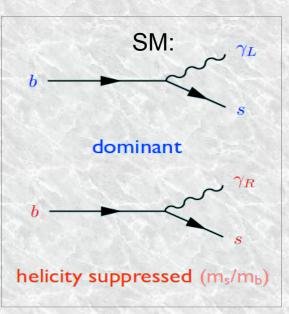

Also a window for SUSY !!!

Mode	$\mathcal{B}[10^{-6}]$	Efficiency	$N_{ m Backg.}$	$N_{\text{Sig-exp.}}$	$N_{ m Backg.}$	$N_{\text{Sig-exp.}}$	Statistical	Total
		Belle	711 fb^{-1}	711 fb^{-1}	$50 ab^{-1}$	50 ab^{-1}	error	Error
		$[10^{-4}]$	Belle	Belle	Belle II	Belle II	50 ab^{-1}	
$B^+ o K^+ u \bar{ u}$	3.98	5.68	21	3.5	2960	245	23%	24%
$B^0 o K^0_{ m S} u ar{ u}$	1.85	0.84	4	0.24	560	22	110%	110%
$B^+ \to K^{*+} \nu \bar{\nu}$	9.91	1.47	7	2.2	985	158	21%	22%
$B^0 \to K^{*0} \nu \bar{\nu}$	9.19	1.44	5	2.0	704	143	20%	22%
$B \to K^* \nu \bar{\nu}$ combin	ied		Nation?	400		10000	15%	17%

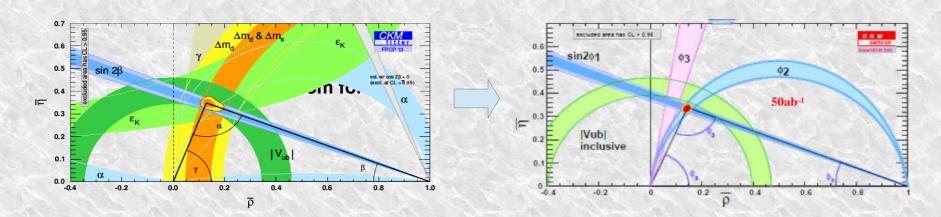
Sources of LFV beyond the SM?

 $\tau \to \mu \gamma \quad \tau \to eee$

Highly suppressed in SM, but in some NP scenarios BF may be expanded to 10^{-10} - 10^{-7}



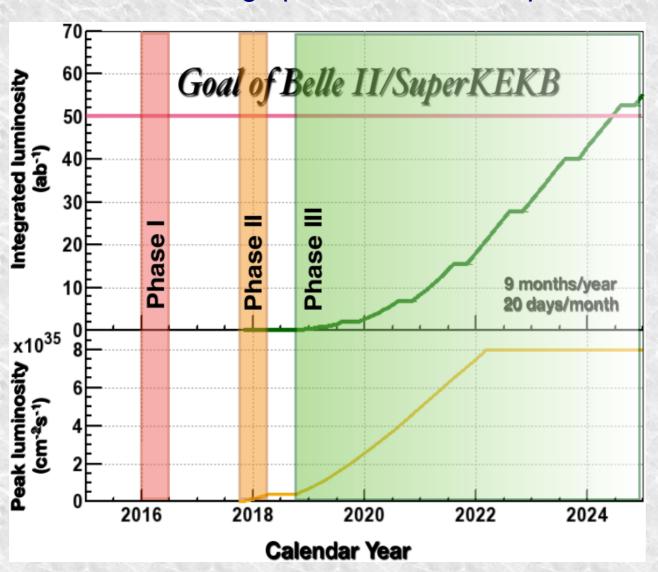
Are there right-handed currents from NP?


• Time-dependent CP Violation in $B \to K^{*0} \gamma$ Phys. Rev. Lett.79, 185

Phys. Rev. D71, 076003 $K^{*0} \gamma$

no charged tracks from B decay to reconstruct the vertex !!!

Enhanced precision of UT parameters (sides, angles)



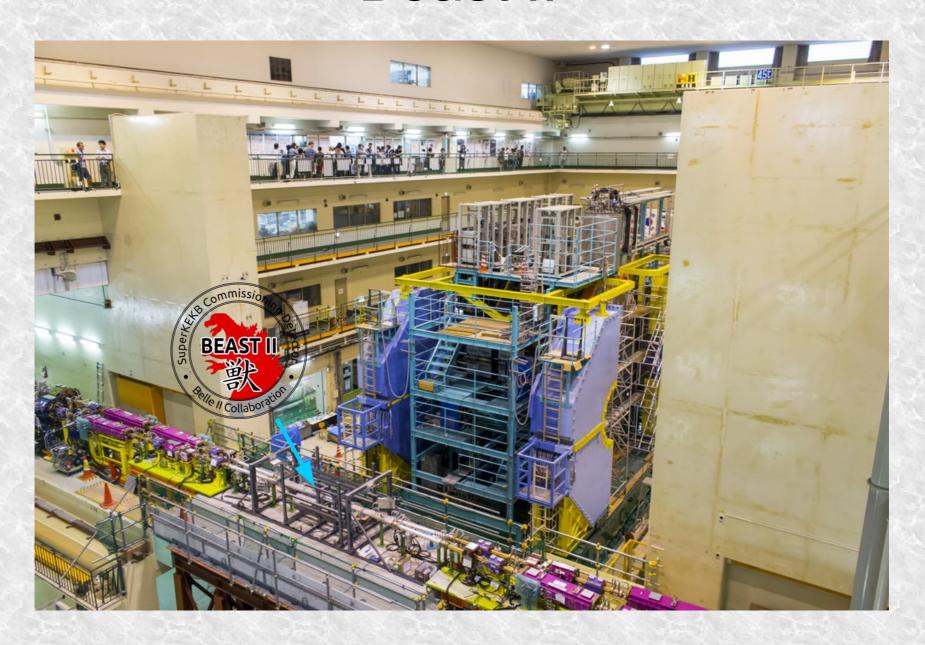
Expected precision for 50 ab⁻¹: α , β , γ angles: 1°, 0.3°, 1.5°

Inconsistency between angles or/and sides → NP

SuperKEKB luminosity /Belle II status & schedule

Commissioning/operation of Belle II phases:

Phase 1 -

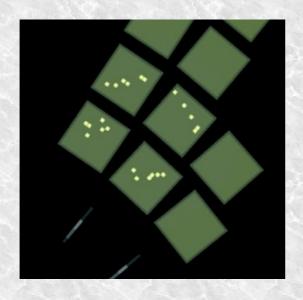

- commissioning of the main ring
- Installation of outer detectors
- Vacuum scrubbing & beam background studies with BEASTII

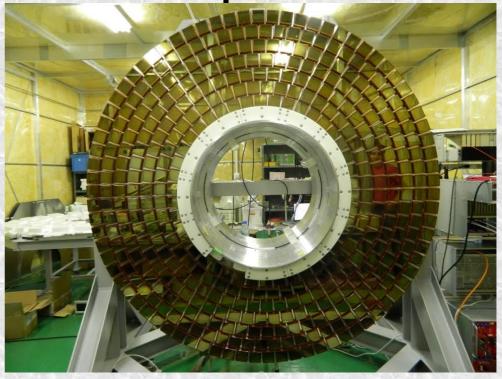
Phase 2 – Start of the collisions, detector commissioning (Nov 2017 – spring 2018) without vertex detector. First physics runs on Y(4S) and Y(6S)! ~20±20 fb -1

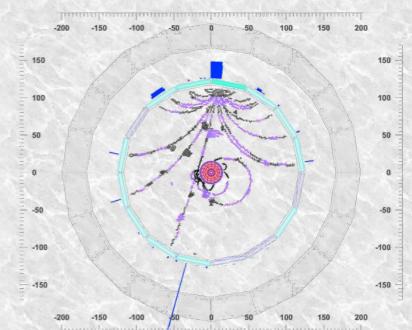
Phase 3 - full detector operation by the end 2018

• Full data sample (50 ab⁻¹) to be collected by 2025

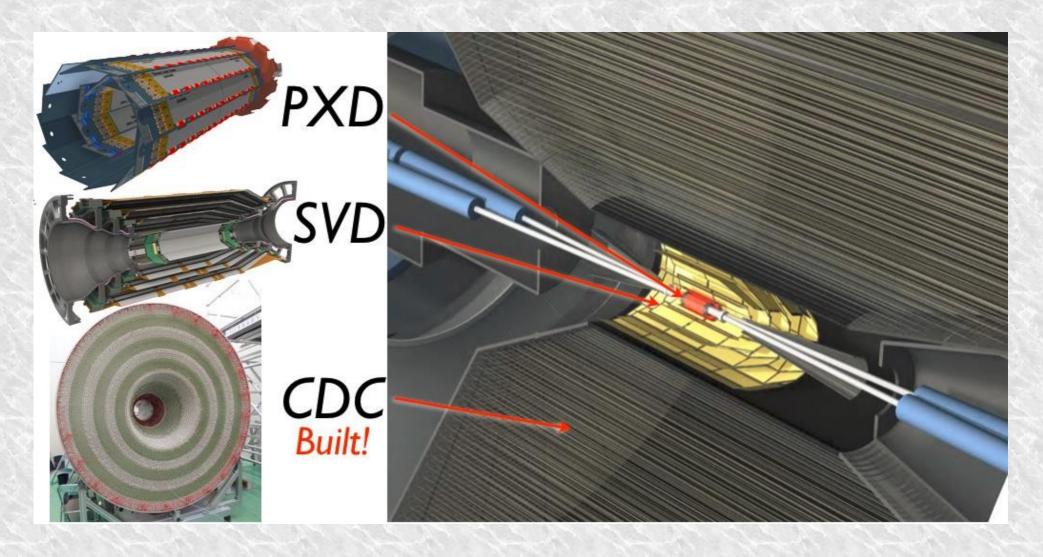
Beast II



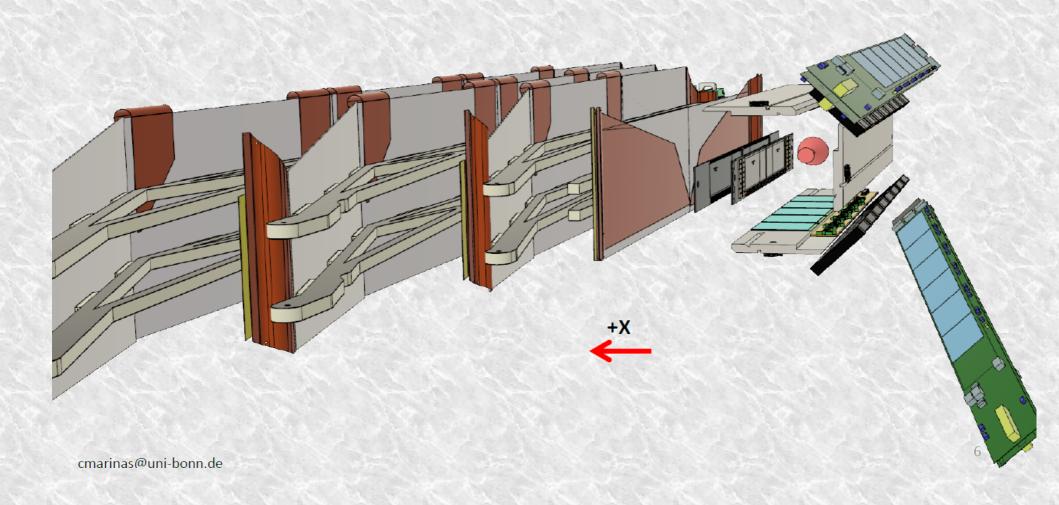

Belle II construction


Belle II recent development

- Forward PID: Aerogel RICH installed



- Beautiful cosmic ray event with full detector



Belle II tracking system

Silicon vertex detetors (SVD +PXD_ will be installed next summer after confirmation that machine beam background is low enough

Belle II tracking system

For Beast phase II we will only one sector of pixel and DSSD detectors + some RD detectors

Summary

- B factories have a track record of discovery in flavor physicsB, which will continue to play a fundamental role in the process of understanding Nature in the next decade
- Belle II detector will start taking data very soon

24 Countries, over 700 collaborators and 104 institutions

BACKUP

	Observables	Belle	Belle II	
		(2014)	$5 {\rm \ ab^{-1}}$	$50 {\rm \ ab^{-1}}$
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$ 64	0.012	0.008
	α [°]	$85 \pm 4 \text{ (Belle+BaBar)} 24$	2	1
	γ [°]	68 ± 14 [13]	6	1.5
Gluonic penguins	$S(B \to \phi K^0)$	$0.90^{+0.09}_{-0.19}$ 19	0.053	0.018
	$S(B \to \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$ 65	0.028	0.011
	$S(B \to K_S^0 K_S^0 K_S^0)$	$0.30 \pm 0.32 \pm 0.08$ 17	0.100	0.033
	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$ 66	0.07	0.04
UT sides	$ V_{cb} $ incl.	$41.6 \cdot 10^{-3} (1 \pm 1.8\%)$ 8	1.2%	
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{\text{ex.}} \pm 2.7\%_{\text{th.}})$ 10	1.8%	1.4%
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$ 5	3.4%	3.0%
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 8.2\%)$ [7]	4.7%	2.4%
Missing E decays	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1 \pm 27\%)$ 26	10%	5%
	$\mathcal{B}(B \to \mu\nu) \ [10^{-6}]$	< 1.7 [67]	20%	7%
	$R(B \to D \tau \nu)$	$0.440(1 \pm 16.5\%)$ [29] [†]	5.6%	3.4%
	$R(B \to D^* \tau \nu)^{\dagger}$	$0.332(1 \pm 9.0\%)$ 29 [†]	3.2%	2.1%
	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40 30	< 15	30%
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) [10^{-6}]$	< 55 30	< 21	30%
Rad. & EW penguins		$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%
	$A_{CP}(B \to X_{s,d}\gamma) [10^{-2}]$	$2.2 \pm 4.0 \pm 0.8$ [68]	1	0.5
	$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$ 20	0.11	0.035
	$S(B \to \rho \gamma)$		0.23	0.07
	$C_7/C_9 \ (B \to X_s \ell \ell)$ $\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	~20% [36]	10%	5%
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	$< 8.7 \boxed{42}$	0.3	_
	$\mathcal{B}(B_s \to \tau\tau) \ [10^{-3}]$	_	$< 2 \ 44 \ddagger$	_