

ALMA UNIVERSITAS TAURINENSIS

Dark Sector Physics with Belle II

Fabrizio Bianchi

INFN & University of Torino

On behalf of the Belle II collaboration

PANIC 2017, Beijing, September 1-5, 2017

Outline

SuperKEKB and Belle II

The dark sector

 Searches for dark sector particles at Belle II

On the Intensity Frontier: SuperKEKB

- Peak luminosity of 8 x 10³⁵ cm⁻²s⁻¹
 - 40 times the peak luminosity of KEKB
- "Nano-beams" are the key:
 - Vertical beam size is 50 nm at IP
 - Beam current
 "only" a factor 2
 higher then
 KEKB

From KEKB to SuperKEKB

The Belle II Collaboration

700+ scientists 100+ institutions 24 countries

The Belle II Detector

KL and muon detector Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers) CsI(TI), waveform sampling electronics Particle Identification electrons (7 GeV) Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward) 2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD positrons (4 GeV) Central Drift Chamber Smaller cell size, long lever arm

See J. Bennett talk

EM Calorimeter

Vertex Detector

Belle II Trigger

- Hardware trigger + Software trigger
 - Level 1 (L1): hardware based, readout rate: 30 kHz
 - High Level Trigger (HLT): software based, readout rate: 10 kHz
- L1 Trigger:
 - L1 CDC Trigger with 3D tracking
 - L1 ECL Trigger with 3D Bhabha-veto logic using cluster position information and cluster energy requirements
 - L1 Track-Cluster Match
- High Level Trigger:
 - Operating offline reconstruction algorithms as a component of DAQ
 - Suppress event rate to 10 kHz for the offline storage
 - Strong computing power to cope with high event rate
 - From 1500 cores at beginning of data taking to 6000 cores with target luminosity

The Schedule

Beam Background Studies at Phase 1

- BEAST Phase 1 analyses now near completion
 - Documented in a O(100) pages note that will become a NIM paper
- A number of new techniques developed
- Current focus: ensure internal consistency, consult with SuperKEKB group, extrapolate to Phase 3

Improved model and re-calibrated beam size measurements. BGs for a wide range of beam currents and beam sizes now described consistently by a single set of parameters.

Beam background control is a key point in searches for NP in 9/events with missing energy PANIC 2017

The Dark Sector

The Dark Photon Cross Section

$$\sigma = \frac{2\pi\epsilon^2 \alpha^2}{E_{\rm cm}^2} \left(1 - \frac{m_{A'}^2}{E_{\rm cm}^2} \right) \left(\left(1 + \frac{2m_{A'}^2/E_{\rm cm}^2}{(1 - m_{A'}^2/E_{\rm cm}^2)^2} \right) \Theta - \cos\theta_{\rm max} + \cos\theta_{\rm min} \right)$$

where $\Theta \equiv \log \left(\frac{(1 + \cos\theta_{\rm max})(1 - \cos\theta_{\rm min})}{(1 + \cos\theta_{\rm min})(1 - \cos\theta_{\rm max})} \right)$

R. Essig, P. Schuster, and N. Toro; Phys. Rev. D80:015003(2009)

The cross section depends on the mixing strength ε between the photon and the dark photon and on the dark photon mass

B. Batell, M Pospelov, A. Ritz ; Phys. Rev. D79:115008(2009)

PANIC 2017

Dark Photon Decays (2)

- If dark photon is the lightest DM particle, we expect to mostly observe decays to SM leptons (e or µ).
- Search for a "bump" in the dilepton invariant mass distribution.

Monophoton Mode e^+ γ χ χ e^- A' χ

- Otherwise, the dark photon will decay to light DM. The signal will be a mono-energetic photon.
- More difficult to detect (larger irreducible backgrounds).
- Search relies heavily on special
 triggers.

Dilepton Mode

- Background is mostly from events with ISR or FSR
- ISR effects in quarkonia resonances are well known and can be included into invariant mass fits

		Belle 1ab ⁻¹	Belle 2 Phase II 20fb ⁻¹	Belle 2 Phase III 50ab ⁻¹	$\sigma = \frac{N_{sig}}{\sigma I}$
ignal	$\sigma_{A'\gamma} \approx 1 \text{fb}$ $\sigma_{A'\gamma} \approx 10 \text{fb}$	1×10^{3} 1×10^{4}	2×10 2×10^{2}	5×10^4 5×10^5	
8 S	$\sigma_{e^+e^-\gamma} \approx 1000$ $\sigma_{e^+e^-\gamma} = 300 \text{nb}$	3×10^{11}	$\frac{2 \times 10}{6 \times 10^9}$	1.15×10^{13}	Assuming Perfect
×.	$\sigma_{\mu^+\mu^-\gamma} = 1.148 \mathrm{nb}$	1.148×10^{9}	2.296×10^{7}	5.74×10^{10}	Efficiency

Background cross section includes requirement that final state particles are in the detector acceptance

Need to optimize the trigger efficiency with dedicated trigger schemes for different luminosity periods

Dilepton Mode: Selection Criteria

- Two oppositely charged, "well- identified" lepton tracks
- 2. Total invariant mass (two tracks AND photon) near the Y(4S) resonance (9.5 \leq m(µ+µ- or e+e-) $\gamma \leq$ 10.8 GeV/c²)
- 3. One photon with $E_{\gamma} \ge 0.2$ GeV (reduced background from bremsstrahlung)

Dimuon mode Belle II MC

A' Mass Hypothesis (GeV)	Cut 1 (%)	Cut 2 (%)	Cut 3 (%)
0.6	67.8	56.6	56.6
3.0	61.4	52.9	52.9
6.4	74.6	65.6	65.6
9.8	80.6	75.1	73.0
Background	20.6	14.2	8.0

Dimuon Mode: Example Mass Peaks

Expected Reach of Belle II in Dilepton Mode

90% CL upper limits on the mixing strength parameter

Monophoton Mode

- Need a dedicated trigger
- Search performed by fitting the recoil mass distribution $E_{\gamma}^* = (s M_{A'}^2)/2\sqrt{s}$

- Background arises from events in which all final state particles except one photon are outside the detector acceptance
- Mostly from high cross section QED processes:
 - e+e- --> e+e-(γ)
 - e+e- --> γγ(γ)

Monophoton Mode: Single Photon Trigger

(2.5 nb)

Two level 1 single photon triggers, both excluding the innermost ECL crystal towers

- \dot{E}_{y1} * > 1 GeV, with the second cluster energy E_{y2} * < 0.2 GeV (4 nb)
- $E_{\gamma 1}^{*}$ > 2 GeV + Bhabha veto + e+e- ---> $\gamma\gamma$ veto

For comparison hadronic + $\tau\tau$ + $\mu\mu$ cross section is 6.8 nb at Y(4S)

Monophoton Mode: Event Selection

PANIC 2017

Monophoton Mode: Expected Reach of Belle II

Belle II can perform competitive dark photon searches even in Phase 2 Higher sensitivity than BaBar, mainly due to the non projective 9/1/geometry of the calorimeter^PCracks

Axion Like Particles

Assume $a\to\gamma\gamma$ ${\rm g}_{\rm a\gamma}$ is the relevant coupling

- Three photon final state, but ...
 - γ's from axion decay can overlap or be merged for low
 a masses
 - for very low couplings, a can fly away undetected
- Three, two and one photon final states
- Sensitivities at Belle II are being investigated

Dark Higgs

The dark Higgs is produced via Higgsstrahlung (replacing the SM Higgs)

h' decays depend on $M_{h'}$ and $M_{A'}$. Measures the coupling constant of the dark photon to the dark Higgs, α_D .

M_{h'} > 2M_{A'} : h' → A'A', Very low background. Exclusive: 3 charged tracks pairs with same invariant mass and total energy of the event. Inclusive: 2 charged tracks pairs, same invariant mass, third A from 4mom. of e⁺e⁻ system

 $M_{A'} < M_{h'} < 2M_{A'} : h' \rightarrow A'A'*$

 $M_{h'} < M_{A'}$: h' long lived and h' \rightarrow l⁺l⁻, $\pi^+\pi^-$.

Summary

- Belle II successfully rolled in to its final position in SuperKEKB
- 20±20 fb⁻¹ expected for physics in Phase 2 starting at the beginning of 2018
- Data taking with the full detector (Phase 3) will start at the end of 2018
- Belle II will have a strong impact on the search for New Physics in the coming years.
 - The search for the invisible decay of the dark photon to light dark matter looks very promising, even in Phase 2