PROSPECTS FOR HADRONIC PHYSICS AT BELLE II

INDIANA UNIVERSITY

Anselm Vossen

For the Belle II Collaboration

9/8/2017

OUTLINE

2

- Belle (I) Legacy
 - Quarkonium (like)
 - Hadronization (Fragmentation function measurements)
- SuperKEKB and Belle II
 - Upgrade
 - Status
 - Early Physics program
 - Outlook

- KEKB: asymmetric e⁺ (3.5 GeV) e⁻ (8 GeV) collider: $-\sqrt{s} = 10.58 \text{ GeV}, e^+e^- \rightarrow Y(nS) \rightarrow B/B + \text{ continuum}$ $-\sqrt{s} = 10.52 \text{ GeV}, e^+e^- \rightarrow qqbar (u,d,s,c) 'continuum'$
- Ideal (at the time) detector for high precision measurements:

 tracking acceptance θ [17 °;150°]: Azimuthally symmetric
 particle identification (PID): dE/dx, Cherenkov, ToF, EMcal, MuID
- $\Upsilon(5S)$ $\Upsilon(4S)$ $\Upsilon(3S)$ $\Upsilon(2S)$ $\Upsilon(1S)$ Scans/ Experiment | Off. Res. | 10876 MeV | 10580 MeV | 10355 MeV | 10023 MeV | 9460 MeV fb^{-1} fb^{-1} 10⁶ fb^{-1} 10⁶ $[fb^{-1} \ 10^6]$ fb^{-1} 10^{6} fb^{-1} 10⁶ CLEO 0.117.10.41617.11.21.2101.2215BaBar 54 R_b scan 4334713012214 99_ Belle 121367117721003 12251581026

- Available data:
 - ~I ab^{-I} total
 - ~1.8 *10⁹ events at 10.58 GeV,
 ~220 *10⁶ events at 10.52 GeV

BELLE LEGACY IN HADRONIC PHYSICS – QUARKONIUM (-LIKE) PRODUCTION

- B decays
 - Charmonium only
 - All quantum numbers available
- Direct production / Initial State Radiation (ISR)
 - E_{CM} or below
 - J^{PC}=I⁻⁻
- Two-photon interaction
 - J^{PC} = 0-+, 0++, 2++
- Double charmonium production
 - Seen for $J^{PC}=I^{--}(J/\psi, \psi(2S))$ plus J=0 states (C=I?)
- Quarkonium transitions
 - Hadronic/radiative decays between states

QUARKONIUM STUDIES AT BELLE II BUILD ON THE SUCCESSFUL BELLE PROGRAM

- XYZ revolution kicked off by discovery of X(3872) at Belle 2003
- Precision study of Charmonium: States above the DDbar threshold are a strongsuit of B factories \rightarrow can access energy spectrum continuously)
- Precision studies of Bottomium states and transitions

(Choi et al, PRL91 (26) 262001)

5

E⁺-E⁻ CRUCIAL TO EXTRACT HADRONIZATION INFORMATION

h Fragmentation Functions appear Ρ FF. almost always when accessing partonic structure of the nucleon \checkmark σ Proton Structure extracted using QCD factorization theorem FFs contribute to virtually all processes Particular important for transverse spin structure fragmentation pQCD **Proton Structure** function $< \frac{d\sigma^2(e \ q \to e'q')}{dx}$ $\frac{d^2\sigma(ep \to \pi X)}{dx \, dz}$ $- \propto q(x, k_T) \times$ $\langle FF(z, p_T) \rangle$

ACCESS TO FRAGMENTATION FUNCTIONS IN E⁺E⁻

• Polarized FFs can be extracted from back-to-back production

B-FACTORIES: A NEW ERA FOR THE STUDY OF FRAGMENTATION FUNCTIONS

EXAMPLES OF FF 'FIRSTS' AT BELLE

Phys.Rev.Lett. 96 (2006) 232002

BELLE-CONF-1611, arXiv:1611.06648

- First observation of transverse Λ polarization in e+-e-
 - Learn about Baryon spin structure in hadronization

• First observation of Collins effect in back-to-back hadrons

First access to polarization dependent di-hadron FFs

AND THERE IS MORE BELLE HADRONIC PHYSICS

- Exclusive hadronic x-sections (see talk by Griessinger on Wed. on BaBar results)
- Transition form factors
- •

WISHLIST

- More data will help Quarkonium and Fragmentation Fct! studies!
 - Map out resonances
 - More data at/above Y(4S)→search molecular structures near open bottom thresholds
 - Experimental information of charmonium > Ddbar threshold very incomplete,
 - More data below $Y(4S) \rightarrow$ test predictions for unobserved bottomium states
 - Determine transitions and quantum numbers
 - More differential access to fragmentation functions
 - Precision back-to-back correlations of less copious hadrons (e.g. Λ)
 - Precision should be on par with anticipated SIDIS data from JLab12
- State of the Art Detector
 - PID: increase efficiency of e.g. multi kaon final states
 - Vertexing: More efficient charm rejection for FF studies

KEKB \rightarrow SUPERKEKB: DELIVER INSTANTANEOUS LUMI X 40

13

CUT VIEW OF BELLE II DETECTOR

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter: Csl(Tl), waveform sampling Pure Csl for end-caps

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector:

2 layers DEPFET + 4 layers DSSD

Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long

lever arm, fast electronics

Particle Identification: Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Readout (TRG, DAQ): Max. 30kHz L1 trigger ~100% efficient for hadronic events. IMB(PXD)+100kB(others) per event → over 30GB/sec to record

Offline computing:

Distributed over the world via GRID

BELLE II DETECTOR (COMP. TO BELLE)

NEW PARTICLE ID DEVICE THAT SAMPLES CHERENKOV LIGHT DISTRIBUTION WITH PICO-SECOND TIMING

- Mainly TOP detector: goal of resolution < 40ps
- Kaon ID Efficiency >95% over large part of phase space compared with 85% at Belle

READOUT INTEGRATION

Belle II Control Room

Readout integration of installed subdetectors and central DAQ is in progress.
Combined data taking established in cosmic running

CURRENT STATUS AND SCHEDULE

- Phase I (complete)
 - Accelerator commissioning
- Phase 2 (early 2018)
 - First collisions (20±20 fb⁻¹)
 - Partial detector
 - Background study
 - Physics possible
- Phase 3 ("Run I", early 2019)
 - Nominal Belle II start
- Ultimate goal: 50 ab⁻¹

- Search for New Physics via precision measurements
 - CPV, (semi-)leptonic/penguin decays, LFV, dark sector, ...

BELLE II EARLY PHYSICS PROSPECTS

Existing B-Factories ~1.5 ab⁻¹: opportunity for other results in Phase 2/3?

- Phase 2: Above Y(4S)
 - Study of Y(nS) states in (hadronic) transitions
 - Study of exotic four-quark states (e.g. Z_b at Y(6S)) \rightarrow Study possible with limited tracking resolution

BELLE II EARLY PHYSICS PROSPECTS

• Existing B-Factories ~1.5 ab⁻¹: opportunity for other results in Phase 2/3?

	Scans/	$\operatorname{cans}/$ $\Upsilon(5)$		$S) \qquad \Upsilon(4)$		$\Upsilon(3S)$ $\Upsilon(3S)$		$\Upsilon(2S)$		$\Upsilon(1S)$	
Experiment	Off. Res.	10876	MeV	10580	MeV	10355	MeV	10023	MeV	9460	MeV
	fb^{-1}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1	0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R_b s	scan	433	471	30	122	14	99	-	-
Belle	100	121	36	711	772	3	12	25	158	6	102
Potential impact with O(10-100) fb ⁻¹											

- Phase 2: Above Y(4S)-
 - Study of exotic four-quark states (e.g. Zb at Y(6S)) \rightarrow Study possible with limited tracking resolution
 - BB** threshold? : R_b dip versus $\pi\pi\Upsilon$ rise
 - <6fb⁻¹ accumulated by Belle at E_{CM} =Y(6S)
 - Currently energies up to $\Lambda_b \Lambda_b$ threshold (11.24GeV)possible
- Early phase 3: Below Y(4S)
 - Y(2S,3S) access to bottomonium
 - Scan for direct production of $\Upsilon(I^3D_J)$ triplet, $\eta_b(IS,2S)$ studies

PRECISE KNOWLEDGE OF FRAGMENTATION FUNCTIONS NECESSARY FOR SUCCESSFUL SIDIS PROGRAM AT JLABI2

n(x)

ΔT

×

(×)p

₹

×

- JLab12 SIDIS program will have unprecedented precision
- \rightarrow Need similar precision for Fragmentation functions
- Example: Precise measurement of p_T dependent Collins effect at SOLID
 - Needs precise measurement of Collins and spin averaged p_{T} dependent fragmentation functions!
- More advantages of Belle II for FF measurements:
 - Better Vertex resolution, increased MC statistics
 →lower systematics from charm contribution
 - Better PID: Multi-kaon final states

SUMMARY & OUTLOOK

- Belle II will integrate 50x Belle luminosity (= 50 ab⁻¹)over ~6 years
- State of the art detector
- Precision studies of Quarkonia, hadronization
- Physics program with first data focusing on E_{CM} >Y(4S) already promising!
- Precision hadronization studies crucial for JLab12 SIDIS program

ABOVE $\Upsilon(4S) / \Upsilon(6S)$ RUNNING

- Υ (6S) expectation from Υ (5S) and Υ _c(4XXX)
 - Bottomonium: $\pi \pi h_b(1,2,3$?P), $\pi \pi \Upsilon(1,2,3$ S), $\eta \Upsilon(1,2$ D)? •
 - Resolve charged/four-quark intermediate states •
 - Search for X_{b} ("3872")? •
 - Υ (6S) / BB threshold energy region behavior •
- Phase 2 considerations
 - Low p_T track reconstruction •
 - Rest of detector nominal
 - Existing Belle data <6fb⁻¹ •
- Sufficient for Z_b study
- Phase 3: 100 fb⁻¹ sample?

CONCLUSIONS

The B-Factories discovered dozens of new, exotic hadrons (XYZ)

- Strong evidence of four-quark composition
- Many questions about their nature
 - Di-meson molecules? Tetraquarks? Something else?
 - Analogies between cc and bb (and light quark?) systems
- Belle-II is the next generation B-Factory
 - Collect 50x as much data over 2018-2025
 - Best chance to study and understand many of these
 - Plans for dedicated operations to study the XYZ states

Υ(3S) ON-RESONANCE: BOTTOMONIUM PHYSICS

- 200fb⁻¹ ~7xBaBar (Phase 3+)
- Focus on conventional bb physics
 - $\Upsilon(I^3D_j)$ triplet
 - J=1,3 yet to be discovered
 - η_b(IS,2S)
 - Confirm $m(\eta_b(1S,2S))$
 - Hadronic $(\pi^{\circ},\pi^{+}\pi^{-},\eta,\omega)$ decays
 - Radiative transitions
- Z_b⁺ exotic states?

SUPERKEKB/BELLE II SCHEDULE

OTHER PERKS

- More statistics and better vertexing will help with charm corrections
- Systematics will also be reduced since the main sources are dependent on MC statistics
- Better PID will help with multi-kaon final states

PHASE 2 PHYSICS PROGRA

Only initial (low) performance, w/o Vertex Detector, but still there are interesting physics topics to do during phase 2. WG Mode Description Benchmark study or Unique measurement? Semileptonic B→XIV Benchmark Benchmark analysis in Y(4S) B(s)→X I v in Y(6S), Di-Unique Semileptonic B and B s leptons counting in Y(6S) EWP B→K*γ Benchmark Benchmark analysis in Y(4S) BtoCharm $B \rightarrow D\pi$. $D^*\pi$. Benchmark Benchmark analysis in Y(4S) $D \rightarrow hh, K_S X$ Bottomonium $Y(6S) \rightarrow \pi\pi +$ Zb substructure Unique Y(nS)/hb Bottomonium Y(6S) cross section, Cross section Unique Rb measurement and Rb 10-1 [1/GeV] decomposition at 10-2 Y(6S) 10⁻³ ECM 10.75 GeV g_{an} Bottomonium π π Y(pS) Unique $\text{decay} \to \pi\,\pi$ 10-4 Y(pS) 10⁻⁵ Low-multiplicity $ee \rightarrow \gamma A', A' \rightarrow missing$ Dark matter via Unique 10⁻⁶ dark photon 10-7 Low-multiplicity Axion like dark Unique $ee \rightarrow \gamma A' \rightarrow \gamma \gamma$ sector for large 10^{-3} 10-4 A' masses (triphoton final state)

30

BELLE II CDC Vire Configuration Description Descriptio

Wire stringing in a clean room

- thousands of wires,
- I year of work...

CDC EVENT DISPLAYS (WITH FULLY INSTRUMENTED READOUT)

Single cosmic ray track

Multiple tracks (showering cosmic ray event)

 \rightarrow talk by N. Taniguchi

Robust wrt neutron flux from beam background/shields subsequent RPC layers

BELLE II DETECTOR – VERTEX REGION

34

PIXEL DETECTOR: 2 LAYERS OF DEPFET SENSORS

Mechanical mockup of the pixel detector

DEPFET sensor: developed at MPI Munich, produced at HLL

http://aldebaran.hll.mpg.de/twiki/bin/view /DEPFET/WebHome

First laser light observed with the full size sensor

 \rightarrow talk K. Lautenbach

A truly worldwide effort...

INSTALLATION OF SUB-DETECTORS

Group photo Apr. 2017

SUPERKEKB NANOBEAMS

Reduce beam size to a few 100 atomic layers!

3 8

De vers e ferr	КЕКВ		SuperKEKB			
rarameter	LER	HER	LER	HER	units	
beam energy	Еь	3.5	8	4	7	GeV
CM boost	βγ	0.425		0.28		
half crossing angle	ф	П		41.5		mrad
horizontal emittance	εχ	18	24	3.2	4.6	nm
beta-function at IP	βx*/βy*	1200/5.9		32/0.27	25/0.30	mm
beam currents	Ь	1.64	1.19	3.6	2.6	A
beam-beam parameter	ξ _y	0.129	0.090	0.0881	0.0807	nm
beam size at IP σ _x */σ _y *		100/2		10/0.059	μm	
Luminosity L		2.1 x 10 ³⁴		8 x 10 ³⁵	cm ⁻² s ⁻¹	

