$R(D^{(*)})$

Status at Belle & Outlook for Belle II

Toru lijima Kobayashi-Maskawa Institute Nagoya University

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

May 31, 2018

Exotic Hadrons and Flavor Physics Stony Brook

Role of Flavor Physics

- Search for New Physics through processes sensitive to presence of virtual heavy particles.
- Complementary to direct search at LHC high P_T programs.
- Becoming more and more important, since no NP signal at LHC at this moment.

SuperKEKB/Belle II

New intensity frontier facility at KEK

- Target luminosity; $L_{peak} = 8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$ $\Rightarrow \sim 10^{10} \text{ BB}, \text{ T}^{+}\text{T}^{-} \text{ and charms per year } !$
 - $L_{int} > 50 \text{ ab}^{-1}$
- Rich physics program
 - Search for New Physics through processes sensitive to virtual heavy particles.
 - New QCD phenomena (XYZ, new states including heavy flavors) + more

The first particle collider after the LHC!

Advantage of e⁺e⁻ Flavor Factory

- Clean environment
 - Efficient detection of neutrals $(\gamma, \pi^0, \eta, ...)$
- Quantum correlated $B^0\overline{B}^0$ pairs
 - High effective flavor tagging efficiency:
 ~34%(Belle II) ~3% (LHCb)
- Large sample of T leptons
 - Search for LFV T decays at O(10-9)
- Full reconstruction tagging possible
 - A powerful tool to measure;
 - b→u semileptonic decays (CKM)
 - decays with large missing energy

 $B_{sig} \rightarrow \tau \nu, \tau \rightarrow \mu \nu$

 $B_{tag} \rightarrow D\pi, D \rightarrow K\pi\pi\pi$

- Systematics different from LHCb
 - Two experiments are required to establish NP

$$B \rightarrow \pi I V$$

 $B \rightarrow \tau V, D \tau V$
 $B \rightarrow K V V$

0.25

0.05

0.10

0.15

 $\overline{\rho}$

0.20

0.25

Tauonic B Decays

- New Physics may appear in tree level.
- 3rd generation quark (b) and lepton
 (T) involved.
 - large masses → sensitivity to NP
 - Charged Higgs, Leptoquark, ...
- B→D^(*) T V and B→ T V are complementary
- Quantities of interest
 - Lepton Flavor Universality :
 - R(D), R(D*)
 - Polarization: P_T , P_{D^*}
 - q² distribution etc.

$B \rightarrow D^{(*)} \tau \nu$ Belle Results

Tag side

Signal side

• $\tau \rightarrow | \nu \nu$

inclusive

hadronic

π νν • semileptonic

Serimeptorne (v
K^+	π^+
\overline{D}^0	D^* D^0
B	tag
π-	$(\bar{\nu}_{\tau})$ $(\bar{\nu}_{l})$
\mathcal{M}	$(v_{-})^{-1}$ 2-3 neutrinos
	→ Impossible to ful
	e reconstruct P
	reconstruct B_{sig}

year	tag	т mode	R(D)	R(D*)	Ref.
2007	incl.	πν, Ινν	V 30TV 1 1	0.24±0.00	PRL99, 191807 (2007)
2010	incl.	πν, Ινν	0.38±0.11	0.34±0.08	PRD82, 072005 (2010)
2015	had.	lνν	0.375±0.064±0.026	0.293±0.038±0.015	PRD92, 072014 (2015)
2016	s.l.	lνν	IN PROGRESS	0.302±0.030±0.011	PRD94, 072007 (2016)
2017	had.	πν,ρν		0.270±0.035±0.027	PRL118, 211801 (2017), PRD97, 012004 (2018)

~20% (stat) ~7%(syst)

~10-13% (stat) ~3.6-10%(syst)

$B \rightarrow D^{(*)} \tau \nu w/\tau \rightarrow l\nu\nu \& had. tag$

• M^{2}_{miss} to measure $B \rightarrow D^{(*)} \mid V$

PRD92, 072014 (2015)

- $M^{2}_{miss} = [p(e+e-) p(B_{tag}) p(D^{(*)}) p(I)]^{2}$
- Transformed neural network output (O'_{NB}) to measure B→D(*) T V
 - Powerful input: sum of ECL energy not used for signal reconstruction (E_{ECL})

$$R(D) = 0.375 \pm 0.064(\text{stat.}) \pm 0.026(\text{syst.})$$

 $R(D^*) = 0.293 \pm 0.038(\text{stat.}) \pm 0.015(\text{syst.})$

$B \rightarrow D^* \tau \nu w/ \tau \rightarrow \nu k s.l. tag$

PRD94, 072007 (2016)

- More background due to additional V
- Signal/normalization modes are separated by $cos\theta_{B-D^*I}$
- Two dimensional fit to neural network output (O_{NB}) and E_{ECL}
- The first measurement of B→D* I v with s.l. tagging technique

 $R(D^*) = 0.302 \pm 0.030 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$

B \rightarrow D* $\tau \nu$ w/ $\tau \rightarrow \pi/\rho \nu$ & had. tag

Analysis w/ T hadronic decays

→ T polarization

$$\frac{1}{\Gamma(D^{(*)})} \frac{d\Gamma(D^{(*)})}{d\cos\theta_{\text{hel}}} = \frac{1}{2} \left[1 + \alpha P_{\tau}(D^{(*)}) \cos\theta_{\text{hel}} \right]$$

$$P_{\tau}(D^*) = \frac{2}{\alpha} \frac{N_{\text{sig}}(\cos \theta_{\text{hel}} > 0) - N_{\text{sig}}(\cos \theta_{\text{hel}} < 0)}{N_{\text{sig}}(\cos \theta_{\text{hel}} > 0) + N_{\text{sig}}(\cos \theta_{\text{hel}} < 0)}$$

 $\tau \rightarrow \pi \nu : \alpha = 1.0$, $\tau \rightarrow \rho \nu : \alpha = 0.449$

PRL118, 211801 (2017), PRD97, 012004 (2018)

$$P_{T}(D^{*}) = -0.497 \pm 0.013$$

$$R(D^*) = 0.270 \pm 0.035(\text{stat.}) ^{+0.028}_{-0.025}(\text{syst.})$$

 $P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat.}) ^{+0.21}_{-0.16}(\text{syst.})$

The first measurement of P_T (D*) : < +0.5 (90% C.L.)

Measurement of T polarization

Solving the equation, $\cos\theta_{\rm hel}$ is obtained!

Summary of present R(D(*)) Results

R(D) = 0.300±0.008 HPQCD (2015) 0.299±0.011 FNAL/MILC (2015) 0.299±0.003 P. Gambino, D. Bigi (2016) LQCD+f(B→DIV) from BaBar/Belle

 $R(D^*) = 0.252\pm0.003$ S.Fajfer, J.F.Kamenik, and I.Nisandzic (2012)

Expected resolution at Belle II

- Simple extrapolation by luminosity allows measurements with statistical errors;
 - $R(D) : \sim 7.5\% (2.4\%) \text{ at 5 (50) ab}^{-1}$
 - $R(D^*)$: ~ 4.9% (1.5%) at 5 (50) ab⁻¹

for hadronic tag + $T \rightarrow |VV|$

- Statistical error will be further reduced by improved tagging with;
 - Fast BDT
 - More decay modes

Tag algorithm date	MVA	Efficiency	Purity
Belle v1 (2004)	Cut-based (Vcb)	-	-
Belle v3 (2007)	Cut-based	0.1	0.25
Belle NB (2011)	Neurobayes	0.2	0.25
Belle II FEI (2017)	Fast BoostedDecisionTree	0.5	0.25

Will soon hit the systematic limit!

- B⁰: 14→26
- $D^{+}/D^{*+}/D_{s}^{+}: 18 \rightarrow 26$
- $D^0/D^{*0}: 12 \to 17$

Leading Systematic Uncertainties (Belle)

- Uncertainty in D** composition
- Uncertainty in modeling of $B \rightarrow D^{**} I \nu$ kinematics
- Uncertainty in hadronic B decays as well (for measurements with T hadronic decays)

Phillip Urquijo @ LHCb semitauonic workshp at LAL (Nov.2017)

	Experiment	Error profile*	SL tag R _{D*}	Had tag R _{D*} , τ→h ν	Had tag R _{D*} , τ→l ν ν	Had tag R _D , τ→l ν ν
1	MC statistics	Gauss	2.2	3.5	-	-
2	B → D** l v modelling	Uniform	+1, -1.7	2.4	1.5	4.2
3	$B \rightarrow D^* l v$	Gauss	+1.3, -0.2	2.3	-	-
4	D** decay modes	Uniform	(in 2)	(in 2)	1.3	3.0
5	Hadronic B decays	Mixed	1.1	7.3	-	-
6	B → D** τν	Uniform	(in 2)	(in 2)	-	-
7	Fake D ^(*)	Gauss	1.4	0.2	0.3	0.5
8	Fake lepton	Gauss	-	-	0.6	0.5
9	Lepton ID	Gauss	1.2	1.8	0.5	0.5
10	τBr	Gauss	0.2	0.3	0.2	0.2
11	Other	Gauss	-	2.3	-	-
	Total		3.5	9.9	5.2	7.1

^{*} Gauss = data driven or PDG, Uniform = nominal central value is arbitrary

Belle II will provide much more information

- Differential distribution of narrow and broad components
- More complete study of D** decay width m2miss studies and hadronic modes

Belle, arXiv: 1803.06444

New hadronic tag analysis

- B+ \rightarrow D(*) π +I ν (I.4k signal)
- $B^0 \rightarrow D^{(*)}\pi^+ l \nu$ (I. Ik signal)
- $\mathcal{B}(B^+ \to D^- \pi^+ \ell^+ \nu)$ = $[4.55 \pm 0.27 \text{ (stat.)} \pm 0.39 \text{ (syst.)}] \times 10^{-3}$,
- $\begin{array}{l} \bullet \ \mathcal{B}(B^0 \to \bar{D}^0 \pi^- \ell^+ \nu) \\ = [4.05 \pm 0.36 \ (\mathrm{stat.}) \ \pm 0.41 \ (\mathrm{syst.})] \times 10^{-3}, \end{array}$
- $\mathcal{B}(B^+ \to D^{*-}\pi^+\ell^+\nu)$ = $[6.03 \pm 0.43 \text{ (stat.)} \pm 0.38 \text{ (syst.)}] \times 10^{-3}$,
- $\mathcal{B}(B^0 \to \bar{D}^{*0}\pi^-\ell^+\nu)$ = $[6.46 \pm 0.53 \text{ (stat.)} \pm 0.52 \text{ (syst.)}] \times 10^{-3}$.

O(10) more tags expected.

Belle II Projections

- Lepton universality violation may be established even with 5ab-1 (2020).
- High statistics data will provide more detailed information, such as T polarization, q2 distribution, to discriminate type of NP.

	ΔR(D) [%]			ΔR(D*) [%]		
	Stat Sys Total			Stat	Sys	Total
Belle 0.7 ab ⁻¹	14	6	16	6	3	7
Belle II 5 ab ⁻¹	5	3	6	2	2	3
Belle II 50 ab ⁻¹	2	3	3	1	2	2

- More observables (distributions)!
 - $P(\tau), P(D^*)$
 - $d\Gamma/dq^2$, $d\Gamma/dp_{D(*)}$, $d\Gamma/dp_e$, ...
- More modes!
 - $B \rightarrow \pi \tau \nu$,
 - $B_S \rightarrow D_S \tau \nu \text{ (at 5S runs)}, ...$

SuperKEKB Accelerator

• Low emittance ("nano-beam") scheme employed (originally proposed by P. Raimondi)

Machine parameters

		SuperKEKB LER/HER	KEKB LER/HER	
	E(GeV)	4.0/7.0	3.5/8.0	
	ε _× (nm)	3.2/4.6	18/24 X	20
(βy at IP(mm)	0.27/0.30	5.9/5.9	
	βx at IP(mm)	32/25	120/120	
	Half crossing angle(mrad)	41.5	11	2
(I(A)	3.6/2.6	1.6/1.2	
	Lifetime	~10min	130min/200min	
	L(cm ⁻² s ⁻¹)	80×10 ³⁴	2.1×10 ³⁴	

Belle II Detector

- Deal with higher background (10-20×), radiation damage, higher occupancy, higher event rates (L1 trigg. 0.5→30 kHz)
- Improved performance and hermeticity

25countries/regions 105 institutions ~750 researchers

Europe	300
Austria	13
Czechia	6
France	14
Germany	110
Israel	3
Italy	76
Poland	13
Russia	42
Slovenia	16
Spain	4
Ukraine	3

Asia	346
Saudi Arabia	1
Australia	33
China	33
India	44
Japan	150
Korea	43
Malaysia	6
Vietnam	3
Taiwan	28
Thailand	2
Turkey	3

America	129
Canada	28
Mexico	12
USA	89

As of Oct. 2017

SuperKEKB/Belle II Schedule

Phase 1 (w/o final focusing Q, w/o Belle II):

- Accelerator system test and basic tuning,
- Vacuum scrubbing,
- Low emittance tuning, and
- Beam background studies

Phase 2 (w/ final focusing Q, w/Belle II but background monitors instead of vertex detectors)

- Verification of nano-beam scheme target: L>1034 cm⁻²s⁻¹
- Understand **beam background** especially in vertex detector volume

B-KLM, 2013

TOP, 2016 Feb-May

CDC 2016 Oct-Dec

B-KLM, 2013

CDC 2016 Oct-Dec

Roll-In 2017 Apr.

B-KLM, 2013

CDC 2016 Oct-Dec

Roll-In 2017 Apr.

B-KLM, 2013

CDC 2016 Oct-Dec

A-RICH+FW-ECL 2017 Oct.

B-KLM, 2013

CDC 2016 Oct-Dec

Roll-In 2017 Apr.

A-RICH+FW-ECL 2017 Oct.

Global Cosmic Ray Run 2017 Nov. -

Machine commissioning strategy

- I. Start with low beam current
- 2. Squeeze beams to achieve specific Luminosity $L_{sp} = L/(I_{+}I_{-}n_{b}) = 2 \times 10^{31}/cm^{2}/s/mA^{2}$ cf. $L_{sp} = 1.7 \times 10^{31}/cm^{2}/s/mA^{2}$ @KEKB
- 3. Increase number of bunches (n_b) from 394 to 1576, keeping bunch current constant:

 I₊ =0.64mA, I₋=0.51mA
- 4. Further squeeze beam to achieve $L_{sp} = 4 \times 10^{31}$ / cm²/s/mA², and even 8×10^{31} /cm²/s/mA²

Machine Parameters

SuperKEKB can exceed the peak luminosity of KEKB when we achieve $\xi_y > 0.05$

	Phase 2.2 (8x8)		Phase 2	Phase 2.3 (4x8)		Phase 2.4 (4x4)	
	LER	HER	LER	HER	LER	HER	
$I_L \times I_H, n_b$	100	1000 mA x 800 mA, 1576 bunches (3-bucket spacing)					
β _x * [mm]	256	200	128	100	128	100	
β _y * [mm]	2.16	2.40	2.16	2.40	1.08	1.20	
$\varepsilon_{\rm y}/\varepsilon_{\rm x}[\%]$	5.0		1.4		0.7*		
ξ _x	0.0104	0.0041	0.0053	0.0021	0.0053	0.0021	
ξ _y	0.0257	0.0265	0.0484	0.0500	0.0496	0.0505	
I _{bunch} [mA]	0.64	0.51	0.64	0.51	0.64	0.51	
L [cm ⁻² s ⁻¹]		1 x 10 ³⁴ (tentative target)		2 x 10 ³⁴		4 x 10 ³⁴	
L _{sp} [cm ⁻² s ⁻¹ /mA ²]	1.97	x 10 ³¹	3.94 x 10 ³¹		7.88 x 10 ³¹		

* conserve β_y*/ε_y

01

Machine commissioning strategy

- I. Start with low beam current
- 2. Squeeze beams to achieve specific Luminosity $L_{sp} = L/(I_{+}I_{-}n_{b}) = 2 \times 10^{31}/cm^{2}/s/mA^{2}$ cf. $L_{sp} = 1.7 \times 10^{31}/cm^{2}/s/mA^{2}$ @KEKB
- 3. Increase number of bunches (n_b) from 394 to 1576, keeping bunch current constant:

 I₊ =0.64mA, I₋=0.51mA
- 4. Further squeeze beam to achieve $L_{sp} = 4 \times 10^{31}$ / cm²/s/mA², and even 8×10^{31} /cm²/s/mA²

Beam background study

Study	Purpose
Beam-size scan	Measure Touschek BG component
Vacuum bump study	Measure Beam-gas BG component
Collimator study	Find optimal setting
Injection study	Measure injection BG time structure, improve injection efficiency
Luminosity scan	Measure lumi. BG component

Machine Parameters

SuperKEKB can exceed the peak luminosity of KEKB when we achieve $\xi_y > 0.05$

	Phase 2.2 (8x8)		Phase 2.3 (4x8)		Phase 2.4 (4x4)	
	LER	HER	LER	HER	LER	HER
$I_L \times I_H, n_b$	100	00 mA x 800	mA, 1576 b	unches (3-b	ucket spaci	ng)
β _x * [mm]	256	200	128	100	128	100
β _y * [mm]	2.16	2.40	2.16	2.40	1.08	1.20
$\varepsilon_{\rm y}/\varepsilon_{\rm x}[\%]$	5.	.0	1.4		0.7*	
ξ _x	0.0104	0.0041	0.0053	0.0021	0.0053	0.0021
ξ _y	0.0257	0.0265	0.0484	0.0500	0.0496	0.0505
I _{bunch} [mA]	0.64	0.51	0.64	0.51	0.64	0.51
L [cm ⁻² s ⁻¹]		10 ³⁴ e target)	2 x 10 ³⁴		4 x 10 ³⁴	
L _{sp} [cm ⁻² s ⁻¹ /mA ²]	1.97	x 10 ³¹	3.94 x 10 ³¹		7.88 x 10 ³¹	

* conserve β_v*/ε_v

Phase-2 BEAST-VXD setup in VXD volume

PXD / SVD prototype sensors + backgrounded monitors

FANGS x3

PXD CLAWS x2
PLUME x2

Machine commissioning strategy

- I. Start with low beam current
- 2. Squeeze beams to achieve specific Luminosity $L_{sp} = L/(I_{+}I_{-}n_{b}) = 2 \times 10^{31}/cm^{2}/s/mA^{2}$ cf. $L_{sp} = 1.7 \times 10^{31}/cm^{2}/s/mA^{2}$ @KEKB
- 3. Increase number of bunches (n_b) from 394 to 1576, keeping bunch current constant:

 I₊ =0.64mA, I₋=0.51mA
- 4. Further squeeze beam to achieve $L_{sp} = 4 \times 10^{31}$ / cm²/s/mA², and even 8×10^{31} /cm²/s/mA²

Beam background study

Study	Purpose
Beam-size scan	Measure Touschek BG component
Vacuum bump study	Measure Beam-gas BG component
Collimator study	Find optimal setting
Injection study	Measure injection BG time structure, improve injection efficiency
Luminosity scan	Measure lumi. BG component

Machine Parameters

SuperKEKB can exceed the peak luminosity of KEKB when we achieve $\xi_y > 0.05$

	Phase 2.2 (8x8)		Phase 2.3 (4x8)		Phase 2.4 (4x4)	
	LER	HER	LER	HER	LER	HER
$I_L X I_H, n_b$	1000 mA x 800 mA, 1576 bunches (3-bucket spacing)					
β _x * [mm]	256	200	128	100	128	100
β _y * [mm]	2.16	2.40	2.16	2.40	1.08	1.20
$\varepsilon_{y}/\varepsilon_{x}$ [%]	5.0		1.4		0.7*	
ξx	0.0104	0.0041	0.0053	0.0021	0.0053	0.0021
ξy	0.0257	0.0265	0.0484	0.0500	0.0496	0.0505
I _{bunch} [mA]	0.64	0.51	0.64	0.51	0.64	0.51
L [cm ⁻² s ⁻¹]	1 x 10 ³⁴ (tentative target)		2 x 10 ³⁴		4 x 10 ³⁴	
L _{sp} [cm ⁻² s ⁻¹ /mA ²]	1.97 x 10 ³¹		3.94 x 10 ³¹		7.88 x 10 ³¹	

* conserve β_v*/ε_v

21

Construction of Vertex Detector

- Construction of the vertex detector is also in progress.
 - 4 layers of strip (SVD) + 2 layers of pixel (PXD) semiconductor sensors.
- They will be installed in summer 2018, after test collision run.

Completion of SVD half shell

PXD layer I

Summary

- Measurements of $B \rightarrow D^*T \ V$ is one of highlights in the Belle II physics analyses.
 - If confirmed both at Belle II and LHCb, it would be a breakthrough in particle physics!
 - Deviation may be established even with ~5ab-1
- Many improvements are expected;
 - Improved efficiency
 - More observables (T polarization, q² dist., etc.)
- Measurements at Belle II will be systematic error limited.
 Need parallel efforts to understand B semileptonic and hadronic decays with excited D* states.

Belle II Outreach

Also public HP: belle2.jp

Belle II Outreach

Also public HP: belle2.jp

Thank you!

Backup Slides

Systematic Tables at Belle

TABLE IV. Overview of relative systematic uncertainties in percent. The last column gives the correlation between R(D) and $R(D^*)$.

	R(D)[%]	$R(D^*)[\%]$	Correlation
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
D^{**} composition	1.3	3.0	-0.63
Fake D yield	0.5	0.3	0.13
Fake ℓ yield	0.5	0.6	-0.66
D_s yield	0.1	0.1	-0.85
Rest yield	0.1	0.0	-0.70
Efficiency ratio f^{D^+}	2.5	0.7	-0.98
Efficiency ratio f^{D^0}	1.8	0.4	0.86
Efficiency ratio $f_{\text{eff}}^{D^{*+}}$	1.3	2.5	-0.99
Efficiency ratio $f_{\text{eff}}^{D^{*0}}$	0.7	1.1	0.94
CF double ratio g^+	2.2	2.0	-1.00
CF double ratio g^0	1.7	1.0	-1.00
Efficiency ratio f_{wc}	0.0	0.0	0.84
$M_{\rm miss}^2$ shape	0.6	1.0	0.00
$o'_{\rm NB}$ shape	3.2	0.8	0.00
Lepton PID efficiency	0.5	0.5	1.00
Total	7.1	5.2	-0.32

TABLE I. Summary of the systematic uncertainties on $\mathcal{R}(D^*)$ for electron and muon modes combined and separated. The uncertainties are relative and are given in percent.

	$\mathcal{R}(D^*)$ (%)		
Sources	$\mathscr{E}^{\mathrm{sig}}=e,\mu$	$\mathcal{E}^{\text{sig}} = e$	$\mathscr{E}^{\mathrm{sig}} = \mu$
MC size for each PDF shape PDF shape of the normalization in $\cos \theta_{B-D^*\ell}$	2.2 +1.1 -0.0	2.5 +2.1 -0.0	3.9 +2.8 -0.0
PDF shape of $B \to D^{**}\ell\nu_{\ell}$ PDF shape and yields of fake $D^{(*)}$	+1.0 -1.7 1.4	+0.7 -1.3 1.6	$^{+2.2}_{-3.3}$ 1.6
PDF shape and yields of $B \to X_c D^*$	1.1	1.2	1.1
Reconstruction efficiency ratio $\varepsilon_{\text{norm}}/\varepsilon_{\text{sig}}$	1.2	1.5	1.9
Modeling of semileptonic decay $\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)$ Total systematic uncertainty	0.2 0.2 +3.4 -3.5	0.2 0.2 $+4.1$ -3.7	0.3 0.2 +5.9 -5.8

TABLE II. The systematic uncertainties in $R(D^*)$ and $P_{\tau}(D^*)$, where the values for $R(D^*)$ are relative errors. The group "common sources" identifies the common systematic uncertainty sources in the signal and the normalization modes, which cancel to a good extent in the ratio of these samples. The reason for the incomplete cancellation is described in the text.

Source	$R(D^*)$	$P_{\tau}(D^*)$
Hadronic B composition	+7.7% -6.9%	+0.134 -0.103
MC statistics for PDF shape	+4.0%	+0.146
Fake D*	-2.8% 3.4%	-0.108 0.018
$\bar{B} \to D^{**} \ell^- \bar{\nu}_{\ell}$	2.4%	0.048
$\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau}$	1.1%	0.001
$\bar{B} \to D^* \ell^- \bar{\nu}_{\ell}$	2.3%	0.007
τ daughter and ℓ^- efficiency	1.9%	0.019
MC statistics for efficiency estimation	1.0%	0.019
$\mathcal{B}(\tau^- \to \pi^- \nu_{\tau}, \rho^- \nu_{\tau})$	0.3%	0.002
$P_{\tau}(D^*)$ correction function	0.0%	0.010
Common sou	rces	
Tagging efficiency correction	1.6%	0.018
D* reconstruction	1.4%	0.006
Branching fractions of the D meson	0.8%	0.007
Number of $B\bar{B}$ and $\mathcal{B}(\Upsilon(4S) \to B^+B^- \text{ or } B^0\bar{B}^0)$	0.5%	0.006
Total systematic uncertainty	+10.4% -9.4%	+0.21 -0.16

Parameter

	KEKB LER /HER	Phase 1	Phase 2 4x8	Phase 3
β_{x}^{*} (mm)	1200 / 1200	/	128 / 100	32 / 25
β_{y}^{*} (mm)	5.9 / 5.9	/	2.16 / 2.4	0.27 / 0.30
$\varepsilon_{x}(nm)$	18 / 24	2.0 / 4.6	2.1 / 4.6	3.2 / 4.6
ε_{y} (pm) , coupling	1498 / 1598	~ 10 / -	29.4 / 64.4, 1.4% (105 / 230, 5.0%)	8.64 / 12.9 (0.27% / 0.28%)
ξγ	0.129 / 0.090	-	0.0484 / 0.0500 (0.0257 / 0.0265)	0.088/0.081
σ _y * (μm)	0.94 / 0.94	_	0.25 / 0.39 (0.48 / 0.74)	0.048/0.062
I _{beam} (A)	1.64/1.19	1.01/0.87	1.0/0.8	3.6/2.6
N _{bunches}	1584	1576	1576	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	2.1	-	2 (1)	80

Feb. - June 2016

Phase 1 milestones (in 2016)

- Feb. 1: BT tuning started
- Feb. 8: LER injection tuning started
- Feb. 10: beam storage in LER
- Feb. 22: HER injection tuning started
- Feb. 26: beam storage in HER

	HER	LER
Max. current [mA]	870	1010
Integrated current [Ah]	660	780
Avg. pressure [Pa]	~2 x 10 ⁻⁷	~1 x 10 ⁻⁶
Lifetime [min.]	~ 400	~ 70

DR → Phase II

Commissioning of the Positron Dumping Ring (DR)

- First turn on Feb. 8
- Successful storage on Mar. 9

Commissioning of the Main Rings (MR)

- HER storage on Mar.20
- LER storage on Mar.31

Preparation for collision started in April

Belle II Expected Performance

Tracking efficiency vs. p_t

Energy resolution
Better w/ no background,
worse w/ background

-0.1

 $\Delta E (GeV)$

