THE BELLE *II* EXPERIMENT AT SUPERKEKE: STATUS AND PROSPECTS

Eugenio Paoloni INFN & Università di Pisa for the Belle II collaboration

Moscow, 22 X 2018

B-FACTORIES LEGACY

Eugenio Paoloni

INFN

- ◆ 1241 papers (14 Oct. 2018) and counting
 - ◆ 670 from BaBar @ PEP-II + 571 from Belle @ KEKB

KEYS OF TWO SUCCESSFUL EXPERIMENTS

- Large sample (~ 1 billion) of *B* mesons, tau leptons, charmed particles,
 - High luminosity (KEKB exceeded $2 \times 10^{34} \text{ Hz/cm}^2$).
- Clean event structure. (e.g. the Y(4S) event is made by just two entangled B mesons decaying in the end on average in: 11 charged tracks, 5 neutral pions and 1 Klong).
- Asymmetric beam energy: longitudinally displaced decay vertices of the *B* mesons.
- Very mild trigger requirements: one tracks and a half from the IP, or some relevant activity in the electromagnetic calorimeter.
- Excellent detector performances.

Eugenio Paoloni

HOW TO IMPROVE THE BABAR & BELLE RESULTS?

- Extend the Physics reach and improve the accuracy of the measurement with a larger sample:
 - increase in luminosity by a factor 40 by solving:

$$\mathcal{L} \sim f_{\text{coll}} \frac{N^+ N^-}{4\pi \,\sigma_x \,\sigma_y} = 8 \cdot 10^{35} \,\text{cm}^{-2} \,\text{s}^{-1}$$

Fundamental limit: the wall plug power ~
 proportional to current + Longitudinal Fast Instability

Brute force: numerator \mathcal{J} (Currents) I.6A/I.2 A \mathcal{J} 3.6/2.6 A

B. Precision: denominator \searrow (luminous region cross section) KEKB vertical size ~1.1 µm \searrow SuperKEKB ~50 nm How to squeeze down the bunch to 50 nm?

Down To 50 nm: Hour Glass Effect

INFN

Eugenio Paoloni

5

- KEKB emittance ~ <u>0.2nm x radiant</u> Angular divergence ~ 4 mradiant = 4000 nm / mm
- SuperKEKB nominal emittance ~ <u>0.010nm x radiant</u>
 Angular divergence ~ 0.2 mradiant = 200 nm / mm = 50 nm / 0.25mm
 How to collide in a luminous region just 0.25 mm long?

INFN

Eugenio Paoloni

APRIL 26 2018: FIRST COLLISIONS!

Eugenio Paoloni

APRIL 26 2018: FIRST COLLISIONS!

INFN

PHASE 2 HISTORY IN A NUTSHELL

THE WORLD SHORTEST LUMINOUS REGION

• Longitudinal impact parameter of two tracks events:

Eugenio Paoloni

INFN

11

THE WORLD SHORTEST LUMINOUS REGION

• Longitudinal impact parameter of two tracks events:

 $e^+e^- \rightarrow \mu^+\mu^ e^+e^- \rightarrow e^+e^-$

TOWARD THE SMALLEST LUMINOUS REGION

- How to measure the vertical size of the beams?
 - Measure the luminosity with our fast diamond detector while the machine people moves the beam vertically.

NEXT STEPS

- Install additional collimators to reduce the backgrounds
- Install the whole silicon vertex tracker
- Restart the operations in March 2019
- Tune the optics
- Gradually increase the number of bunches and the bunch current
- Gradually decrease the vertical size of the bunches at the IP

INF

LONG TERM PLANS TO ACHIEVE 8 1035 HZ/CM²

Eugenio Paoloni

14

MEANWHILE FROM THE DETECTOR SIDE

- Detector calibrations
- Tuning of the reconstruction algorithms
- Rediscovery of the SM particles

<u>KLong and muon detector:</u> Resistive Plate Chambers (barrel outer layers) Scintillator + WLSF + SiPM's (end-caps , inner 2 barrel layers)

EM Calorimeter: CsI(TI), waveform sampling (barrel+ endcap)

electrons (7 GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), small cells, long lever arm, fast electronics (Core element)

Particle Identification iTOP detector system (barrel) Prox. focusing Aerogel RICH (fwd)

15

positrons (4 GeV)

THE TRACKING SYSTEMS IS WORKING WELL

16

Eugenio Paoloni

INFN

1.13

3.4

THE NEUTRALS IN THE ECL ARE VERY GOOD TOO

PARTICLE IDENTIFICATION IN THE CDC

Performance of CDC dE/dx particle identification with early calibrations in the hadronic event sample.

PARTICLE IDENTIFICATION WITH THE TOP

FIG. 7: $m(K^+K^-)$ distributions for runs with TOP calibration (run number up to 2531). Tracks are required to be in the TOP acceptance. Top: No PID requirement. Middle: $LL(K)^{TOP} > LL(\pi)^{TOP}$ for one of the tracks. Bottom: $LL(K)^{TOP} > LL(\pi)^{TOP}$ for both tracks.

19

Eugenio Paoloni

B MESONS REDISCOVERED

History 1983:

INFN

Eugenio Paoloni

is 5274.2±1.9±2.0 MeV.

B-meson decays to final states consisting of a D^0 or D^{**} and one or two charged pions have been observed. The charged-*B* mass is $5270.8 \pm 2.3 \pm 2.0$ MeV and the neutral-*B* mass

20

FULL FLEDGED VXD READY TO GO IN

- The VXD are almost ready to go in:
 - PXD (1 layer of DEPFET silicon pixel detector)

• SVD (4 layers of double sided silicon strip detector)

SVD +x half-shell, Jan 2018

INFN

Eugenio Paoloni

SVD -x half-shell, July 2018

21

First Cosmic in the +x SVD clam shell at KEK, July 2018

40

20

 $\sigma^{\text{Belle}/O}$ Belle II

PPA 2018

VXD STATUS

Eugenio Paoloni

Impact Parameter Resolution provided by the PXD

 z_0 -Resolution σ [μ m] 140 $a^{2} + \frac{b^{2}}{p\beta \sin(\theta)^{5/2}}$ Fit function: $\sigma =$ 120 Belle SVD2 cosmic (Data) BN715 26.3 ± 0.4 µm 100 $b = 32.9 \pm 0.8 \,\mu m \, \text{GeV}/c$ Belle II single track events (MC) 80 $a = 11.5 \pm 0.1 \,\mu m$ $b = 17.9 \pm 0.2 \,\mu m \, \text{GeV}/c$ 60 **IP** resolution 40 20 ſ $\sigma^{\text{Belle}/\sigma^{\text{Belle II}}}$ 2.4 2.2 1.8 6 2 $p\beta \sin(\theta)^{5/2}$ [GeV/c]

• Impact parameters: σ_{d0} Belle II < 0.5 x σ_{d0} Belle, Mass: σ_M Belle II ~ 0.7 x σ_M Belle

INFN

Time resolution provided by the SVD to reject the machine background

Raw reconstructed time of SVD clusters (N side) associated to tracks.

CONCLUSIONS

• The detector collected 488 pb⁻¹

- The collider luminosity exceeded 5 10³³ Hz/cm² with relaxed ring optic and fairly small currents
- The detector behaved quite well providing good data since the start of the collisions
- The collaboration is on track to restart the operations in March 2019 with the full detector and an improved machine
- Lot of fun (and hard work) in front of us

Thank you

For your

Attention!

BACKUP MATERIAL

Eugenio Paoloni

BETA STAR Y HISTORY AND FUTURE

Courtesy Franck Zimmermann

INFN

Eugenio Paoloni

