

Kenkichi Miyabayashi (Nara Women's University, Japan) 8<sup>th</sup> International Conference on Quarks and Nuclear Physics 2018 Nov. 17<sup>th</sup>

### For QCD, LEP, HERA, ... gave



Running of  $\alpha_s$  and Parton Distribution established, i.e. we have good knowledge about the region of perturbative treatment. Still unrevealed aspects in non-perturbative region.

## Outline

- Legacy of B-factories
- Missions/possibilities at a higher luminosity e<sup>+</sup>e<sup>-</sup> colliding beam experiment
  - Challenges in non-perturbative region QCD
- SuperKEKB accelerator / Belle II detector
  - Design
  - Status and plans
- Summary

#### Legacy of B-factories



High luminosity, asymmetric-energy e<sup>+</sup>e<sup>-</sup> colliding beam experiments were desired to study CP violation.



KEKB&Belle 8 GeV × 3.5 GeV (Run 1999-2010)

PEP II&BaBar 9 GeV × 3.1 GeV (Run 1999-2008) 4

#### **Integrated luminosity of B factories**





### All these are great benefit

 $4\pi$  general purpose spectrometer with

- High momentum resolution,  $\sigma_p/p = 0.3\%@1GeV/c$ .
- Ability to detect  $\gamma$  down to 30 MeV.
- Good  $\gamma$  energy resolution,  $\sigma_M = 5$  MeV for  $\pi^0 \rightarrow \gamma\gamma$ .
- Lepton identification capability,  $\varepsilon$ >0.9, fake<0.01.
- K/ $\pi$ /p separation capability,  $\epsilon$ ~0.9, fake<0.1.
- Excellent B decay vertex reconstruction,  $\sigma_{\Delta z}$  =80  $\mu$ m. +
- World highest luminosity

#### "XYZ" sensations at Belle



#### What made it possible?

From the experience of "XYZ" states, We need to have possibilities to access;

- Various production mechanisms
  - Each physics process has preferable states.
  - Interplay among several approaches is effective.
- Various decay modes
  - Each hypothesis; other decay modes, partner states.
  - Partner states have specific decay modes.

#### Variety of recorded reactions



## X(3872) 1530 citations as of Nov. 10<sup>th</sup> Belle's the most famous discovery



J<sup>PC</sup>=1<sup>++</sup> (Belle, BaBar, CDF, LHCb) from J/ $\psi \pi^+\pi^-$  angular distribution. (PRL110, 222001(2013) and cited papers) Br(X(3872) $\rightarrow$ D<sup>0</sup>D<sup>\*0</sup>) is about Br(X(3872) $\rightarrow$ J/ $\psi \pi^+\pi^-$ ) × 10.

# Admixture : most plausible interpretation for X(3872)



S. Takeuchi, K. Shimizu and M.Takizawa PTEP2014, 123D01(2014).

DD<sup>\*</sup> component is coupled with the same J<sup>PC</sup> cc̄,  $\chi_{c1}(2P)$  (unseen).  $\rightarrow$ can explain Br(X $\rightarrow$ D<sup>0</sup>D<sup>\*0</sup>)/Br(X $\rightarrow$ J/ $\psi \pi^{+}\pi^{-}$ ) is about 10.  $\rightarrow$ D<sup>+</sup>D<sup>\*-</sup> component can explain J/ $\psi \pi^{+}\pi^{-}$  and J/ $\psi \pi^{+}\pi^{-}\pi^{0}$  coexitst.  $\rightarrow$ pure molecule; too fragile to have prompt produced in Tevatron/LHC.  $\rightarrow$ another  $\chi_{c1}(2P)$  dominant state would become broad. 12

#### Z(4430)<sup>+</sup> in $\psi$ (2S) $\pi^{\pm}$ final state



#### **Confirmation by LHCb**



4D fit(M( $\psi(2S)\pi^{\pm}$ ), M(K $\pi$ ), cos $\theta_{\psi(2S)}$ ,  $\phi$ ), PRL112, 222002(2014) Argand diagram (phase change as a func .of mass) gives a proof of resonance. Such approach will be possible to study other states with Belle II statistics only. <sub>1</sub>

#### bb $\pi^{\pm}$ system at $\Upsilon(10860)$



#### Molecular picture works



Decays to  $\Upsilon$  and  $h_b$ can co-exist. Decay into  $B^*\overline{B}^{(*)}$ found to be dominant. PRL116,212001(2016)  $J^P=1^+$  is supported by Dalitz analysis. PRD91,072003(2015).

#### Partner states of Z<sub>b</sub>

Partners may decay into  $\chi_{b,l}$ 

efficiency are multiplied, signal

yield may be lower one order of

Higher statistics needed.

(PRD86,014004(2012)).

magnitude.

 $- Z_b \rightarrow \chi_{b,l} \pi, Z_{b0} \rightarrow \chi_{b,l} \gamma$ 



Various partner searches at Belle II are awaited.

### Charm baryon to check "di-quark"



- Thought to be a good place to check if "di-quarks" is behaving as a good degree of freedom to form hadrons.
- One of the constituent quark is heavy, correlation between the remaining light quarks would become clear.
- $L_1$ :  $\rho$  mode,  $L_2$ :  $\lambda$  mode.

#### To which mode, how much br.?

PRD89,052003(2014)

PRD94,032002(2016)



"charm baryon + light hadron" or "charm meson + baryon"? Very important info., just started to be got in our hand. For J<sup>P</sup> determination, higher statistics needed.

### SuperKEKB collider





Boost factor ~2/3

#### Belle II detector

ECL:CsI (TI), waveform sampling

#### VXD : PXD : DEPFET (pixel) SVD : Silicon strip

**CDC**: drift chamber

7GeV

#### **Issues to overcome**

- Beam background
- High rate capability
- Boost ~ 2/3

#### Technical choice

- Finer segmentation, waveform sampling.
- Material change
- Larger angular coverage (CDC, SVD)
- Closer to the IP (PXD)  $3 \rightarrow 2cm$
- Particle ID improve  $(K/\pi)$  (TOP, ARICH) 21

**KLM :** "KL and muon" RPC (barrel) + SiPM (end-cap, inner barrel)

1.5T solenoid coil

 $e^+$  (4GeV)

**PID:** Cherenkov ring image **TOP** (barrel): Quarts **ARICH** (endcap): Aerogel

#### First e<sup>+</sup>e<sup>-</sup> collision 2018 April 26<sup>th</sup> 0:38 JST



- Not only accelerator and detector control rooms but also made remotely accessible.
- Not only Bhabha, continuum but also the first B-meson pair production candidate event was gotten.



#### Rediscoveries in phase-2 operation



M<sub>bc</sub> (GeV/c<sup>2</sup>)

#### Vertex detector



#### 2<sup>nd</sup> half-SVD completed (2018 July 17<sup>th</sup>)





During assembling of PXD (L1)

#### SVD : All the sensor ladder completed

- L3: 7+2, L4: 10+2, L5: 12+3, L6: 16+4
- Assembling half-SVD x2 completed.

#### PXD : only L1 to be installed.

- Combined with SVD.
- Cosmic test is being carried out.

#### Next runs and prospects



- Phase 2: without fully equipped vertex detector, data taking with e<sup>+</sup>e<sup>-</sup> collision, studying beam background.
- Phase 3: fully equipped detector, tuning up operation parameters toward the design luminosity 8 × 10<sup>35</sup>cm<sup>-2</sup>s<sup>-1</sup>.

# **Closing remarks**

- For quarkonium(-like) XYZ states
  - Other decay modes and Partner searches need more data.
  - Argand diagram only possible with Belle II statistics.
- Charmed baryons to test "di-quark" picture.
  J<sup>P</sup> determination need more data.
- Variety of recorded reactions and accessible decay modes continue to be exploited.
- All attempts with higher statistics data to give convincing and comprehensive understanding is a Belle II mission in hadron physics.
- Accelerator and detector commissioning is going on.