Status and perspectives of the Belle II experiment

57th International Winter Meeting on Nuclear Physics Bormio, January 23, 2019

> Francesco Forti, INFN and University, Pisa

INFN

Super KEKB

A flavor suite

- Prelude: A brief history of flavor
- Allemande: The SuperKEKB upgrade
- Courante: The Belle II upgrade
- Sarabande: Phase 2 running (2018)
- Bourrée: Physics commissioning
- Gigue: Phase 3 running and perspectives

A musical section or movement introducing the theme or chief subject

Prelude A brief history of flavor

(Some) past successes of flavor

Indirect discoveries of flavor experiments

- suppression of $K_L^0 \to \mu^+ \mu^-$ decays \Rightarrow existence of charm quark by GIM mechanism
- $K^0 \overline{K}^0$ oscillations, $B^0 \overline{B}^0$ oscillations \Rightarrow charm and top quark masses
- CPV in K⁰ systems
 ⇒ 3rd generation of quarks & KM mechanism

Precision measurement of CKM elements

First generation B Factories

BABAR @ PEP-II: 1999-2008

BELLE @ KEKB: 1999-2010

INFN

F.Forti, Belle II

Asymmetric B factories: flavour physics at the intensity frontier

BaBar (PEPII@SLAC) and Belle (KEKB@KEK)

1.0

Physics of the B Factories

 Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley,
 Eur. Phys. J. C74 (2014) 3026,
 <u>arXiv:1406.6311</u> [hep-ex]

e+e- cross section

e+e- cross section in the bottomonium region

 $R=\sigma(e^+e^- \rightarrow had)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

Cross section @ Y(10580)

Essence of asymmetric e+e- B-Factories

- Center of mass travels along beam direction (boost)
- Very clean events (only tens of particles in the final state)
- Open trigger (no specific state pre-selection)

Essence of asymmetric e+e- B-Factories

- Center of mass travels along beam direction (boost)
- Very clean events (only tens of particles in the final state)
- Open trigger (no specific state pre-selection)
- Full Event Interpretation provides powerful tools

Fully reconstruct one B (thousands of modes)

The other B is completely known both kinematically and in flavor: it is a beam of B's

Super clean B allows for analyses like
 B→ invisible

Breco

Xu

B_{recoi}

Essence of asymmetric e+e- B-Factories

- Center of mass travels along beam direction (boost)
- Very clean events (only tens of particles in the final state)
- Open trigger (no specific state pre-selection)
- Full Event Interpretation provides powerful tools

- Main limitations:
- e+e- Cross section is much smaller (~1000) than hadronic production
- Only B_d and B_u produced. B_s possible, but with smaller rate. B_c out of reach.

The power of flavor

• Explore the origin of CP violation

- Key element for understanding the matter content of our present universe
- Established in the B meson in 2001
- Direct CPV established in B mesons in 2004

• Precisely measure parameters of the standard model

- For example the elements of the CKM quark mixing matrix
- Disentangle the complicated interplay between weak processes and strong interaction effects

Search for the effects of physics beyond the standard model in precision measurements

- Potentially large effects on rates of rare decays, time dependent asymmetries, lepton flavor violation
- Sensitive to large New Physics scale, as well as to phases and size of NP coupling constants

The next decade: the power of quantum loops

13

The intensity frontier

A musical composition or movement in moderate tempo and duple or quadruple time

Allemande The SuperKEKB upgrade

How to increase the luminosity?

SuperKEKB design parameters

narawatara		KE	KB	Super	mite	
parameters		LER	HER	ler	HER	UMIIS
Beam energy	3.5	8	4	7	GeV	
Half crossing angle	¢	1	1	41	mrad	
Horizontal emittance	Ex	18	24	3 .2	4.6	nm
Emittance ratio	к	0.88	0.66	0.37	0.40	7.
Beta functions at IP	β x*/βy*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	lb	1.64	1.1 9	3.60	2.60	A
beam-beam parameter	ξγ	0.1 29	0.090	0.0881	0.0807	
Luminosity	2.1 x	1034	8 x ⁻	cm ⁻² s ⁻¹		

- Nano-beams and a factor of two more beam current to increase luminosity
- Large crossing angle

- Change beam energies to solve the problem of short lifetime for the LER
- Consequence $\beta\gamma$: decrease 0.42 \rightarrow 0.28

Replace short dipoles with longer ones (LER)

Redesign the lattices of HER & LER to squeeze the emittance

TiN-coated beam pipe with antechambers

Jan 23, 2019

Super KEKB uest for BSM

New superconducting /permanent final focusing quads near the IP

New positron target / capture section

Add / modify RF systems for higher beam current

Phase I (2016)

- NO final focus; NO damping ring •
- Circulated both beams but no • collisions;
- Tune accelerator optics, etc.; • vacuum scrubbing
- Beam Background studies with • dedicated BEAST II/1 detector

Phase II (2018)

- First collisions •
- Beam Commissioning •
- Background measurements with • BEAST II/2
- Physics run with Belle II without • Vertex Detector
- Phase III ($2019 \rightarrow$)
 - Physics run •

Music in quick triple time or in a mixture of 3/2 and 6/4 time

Courante The Belle II upgrade

Jan 23, 2019

$Belle \ II \ Detector \ (\text{in comparison with Belle})$

Belle II Detector

K_L and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter: CsI(Tl), waveform sampling

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

> positron (4GeV) COMPUTING

22

Belle II Detector - KLM and ECL

ECL: EM Calorimeter - Measure photons, identify electrons CsI(Tl) crystals, waveform sampling

KLM: K_L and muon detector -Identify muons (penetration) and KL (showers) Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

Superconducting Solenoid: 1.5T field

F.Fort

Belle II Detector Central Drift Chamber

F.Fort

Much bigger than in Belle!

CDC: Central Drift Chamber - Main tracking device - Momentum measurement, dE/dx He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Oct 2016: Central Drift Chamber inside Belle II

Vertex Detector - PXD & SVD

Vertex Detector: Vertex reconstruction, low p tracking Pixel detectors – PXD : 2 layers DEPFET Strip detectors - SVD: 4 layers DSSD

Significant improvements in vertex resolution w.r.t. Belle

PXD: Only L1 + 1/6 of L2 Full detector in 2020

Jan 23, 2019

F.Forti, Belle II

0

VXD Installation Dec 2018

F.Forti, Belle II

Belle II Collaboration

>700 members,101 institutions,23 countries

North Pacific Ocean

A music in slow triple time with accent on the second beat

Sarabande Phase 2 running (2018)

SuperKEKB/Belle II schedule

First collisions on Apr 26, 2018

Phase 3 will start in March 2019, slightly delayed from the original plan

First cosmic events - early 2018

First collisions in Tsukuba Hall B3 Control Room

One of the first events, probably $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$

Nanobeams, how do we know?

- Measure width of luminosity scan with diamond detectors
- Big improvements, but still struggling with beam blow-up

Phase 2 in a nutshell

$$L_{peak} = 5.5 \times 10^{33} / cm^2 / sec$$

Integrated luminosity ~ 500/pb Measured with $ee \rightarrow ee(\gamma)$, $\gamma\gamma$, $\mu\mu(\gamma)$

Priority given to machine tuning

N.B. Still a long way to go with the superconducting final focus (one order of magnitude in β_v^*)

PEP-II design luminosity $3 \ge 10^{33}$

VXD Volume in Phase II

Beam backgrounds

Short story:

• Backgrounds during phase 2 running are larger than anticipated, but reasonably controllable and not dangerous for the detector.

- \rightarrow Decision to complete detector installation
- New collimators in machine will give additional handles on background control
 - Large reduction factor (O(10) or more) needed to ramp up in luminosity \rightarrow Significant challenge

A musical composition with the rhythm of quick duple time Bourrée Physics commissioning

Signals involving photons

- Good reconstruction of both single photons and pairs
- Ready for the "dark sector" single photons

 $e^+e^- \rightarrow \gamma X$

Signals involving charged tracks

- Good tracking efficiency.
- Well understood with Montecarlo.

INFN

4(

Marvels of Particle ID

- An example of Kaon identification capabilities with early calibration and alignment $\phi \to K^+ K^-$

Unique capabilities. All neutral states

D^o decaying in CP eigenstate

$$D^{*+} \rightarrow D^0(K_S \pi^0) \pi^+$$

Need a pair of pions with a displaced vertex and two photons measured with good resolution and low background

Another event from Belle II's first evening

 $e^+e^- \rightarrow \gamma^* \rightarrow BB$

A potential e+ e- \rightarrow B anti-B candidate

Event shape

Event Topology (fits to R_2) tells us we are seeing B's

$$R_2 = H_2/H_0$$

INFN

$$H_l = \sum_{i,j} \frac{|\mathbf{p}_i| |\mathbf{p}_j|}{E_{\text{vis}}^2} P_l(\cos \theta_{ij}) ,$$

45

A lively dance movement having compound triple rhythm and composed in fugal style

Gigue Phase 3 running and perspectives

Jan 23, 2019

Early Phase 3 Physics

- Luminosity will depend on machine and detector performance
- Plausible assumption of about 10fb-1 by summer 2019
- <u>Semileptonic</u>
 - $B \rightarrow \pi l \vee and \rho l \vee untagged (CLEO)$ saw a signal with 2.66 fb⁻¹)
- <u>Time Dependent CP Violation/Charm</u>
 D lifetimes (2 fb⁻¹)
 - Doubly Cabibbo suppressed $D^0 \rightarrow K^+$ $\pi^-, D^0 \rightarrow K^+ \pi^- \pi^0 (10 \text{ fb}^{-1})$
 - \dot{B} lifetimes (2-10 fb⁻¹)
 - Time dependent B mixing (10 fb⁻¹)

- <u>Radiative/Electroweak Penguins</u>
 B→K* γ (b→s) (2 fb⁻¹) rediscover penguins
- $-B \rightarrow Xs \gamma (b \rightarrow s) (~10 \text{ fb}^{-1} \text{ depending})$ on off-resonance data taking)

 $\begin{array}{l} \underline{Hadronic \ B \ decays \ (not \ time} \\ \underline{dependent}) \\ - B \rightarrow K \ \pi \ (b \rightarrow u) \ (10 \ fb^{-1}) \\ - B \rightarrow \Phi \ K \ (b \rightarrow s) \ (10 \ fb^{-1}) \\ - B \rightarrow J/\psi \ K \ (with \ more \ significance \ 2-10 \ fb^{-1}) \end{array}$

++ Dark Sector Physics Publications

Demonstrate full Belle II physics performance

Dark Sector

• May be possible to provide results even with very limited statistics.

- New triggers will be used in Belle II to search for dark matter and dark photons.
 - Single photon trigger with ~1 GeV threshold to search for dark photon decaying into light dark matter

Lepton universality in $B \rightarrow D^{(*)} \tau v$

$$R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)} \quad (\ell = e \text{ or } \mu)$$

 Partial cancellation of theoretical uncertainties related to hadronic effects and measurement systematics.

$$P_{\tau}(D^*) = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$$
 (Γ^{\pm} : decay rate of $\pm \tau$ -helicity)

Another probe of New Physics

INFN

50

Lepton flavor violating τ decays

INFN

51

Time-dependent physics precision

- B2TIP: Belle2 Theory Interface Platform
- A series of joint workshops with theorists
- Belle II Physics book submitted to PTEP

https://arxiv.org/abs/1808.10567 https://inspirehep.net/record/1692393/

					Observables	ervables Expected the. accu- Expected Fac						
						racy	exp. u	ncertainty				
					UT angles & sides							
TT1+im	notom		vidio	\mathbf{r}	$\phi_1 \ [^\circ]$	***	0.4		Belle II			
U I U I I I I	TOPE DI		1210	TT	ϕ_2 [°]	**	1.0		Belle II			
	T .				ϕ_3 [°]	***	1.0		LHCb/Belle II			
					$ V_{cb} $ incl.	***	1%	CKM	Belle II			
					$ V_{cb} $ excl.	***	1.5%		Belle II			
					$ V_{ub} $ incl.	**			Belle II			
					$ V_{ub} $ excl.	**	2%		Belle II/LHCb			
					CP Violation							
					$S(B \to \phi K^0)$	***	0.02		Belle II			
<u> </u>				<u> </u>	$S(B \to \eta' K^0)$	***	0.01	CPV	Belle II			
Radiative & EW Penguins					$\mathcal{A}(B \to K^0 \pi^0) [10^{-2}]$	***	4	UI V	Belle II			
$\mathcal{B}(B \to X_s \gamma)$	**	4%	EWP	Belle II	$\mathcal{A}(B \to K^+ \pi^-)$ [10 ⁻²]	***	0.20		LHCb/Belle II			
$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	***	0.005		Belle II (Se	(Semi-)leptonic			יייס ייד	1			
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03		Belle II	$\mathcal{B}(B \to \tau \nu) [10^{-6}]$	**	3%	TURL T	Belle II			
$S(B o ho \gamma)$	**	0.07		Belle II	$\mathcal{B}(B \to \mu \nu)$ $[10^{-6}]$	**	7%	SL	Belle II			
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3		Belle II	$R(B \rightarrow D\tau\nu)$	***	3%		Belle II			
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%		Belle II	$R(B \rightarrow D^* \tau \nu)$	***	2%	ГГΟΛ	Belle II/LHCb			
$\mathcal{B}(B \to K \nu \overline{\nu}) \ [10^{-6}]$	***	20%		Belle II					•			
$R(B \to K^*\ell\ell)$	***	0.03		Belle II/LE	ICb							
Charm												
$\mathcal{B}(D_s \to \mu \nu)$	***	0.9%		Belle II								
$\mathcal{B}(D_s \to \tau \nu)$	***	2%		Belle II								
$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	**	0.03	CHARM	Belle II	• Very	rich physics						
$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***	0.03		Belle II	••••	vory rion physics						
$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$	***	4		Belle II	program in the next few							
Tau												
$ au o \mu \gamma \ [10^{-10}]$	***	< 50	T T T T T	Belle II	Vear	pc						
$\tau \to e\gamma \ [10^{-10}]$	***	< 100	Lዞ' V	Belle II	<i>y</i> 000							
$ au o \mu\mu\mu \ [10^{-10}]$	***	< 3		Belle II/LE	ICb							

Global perspective

2010	2020	2021	2022	2023	2024	2025	2026	2027	2028	2020	2030	2031	2032	203+		
2019	2020	2021	2022	2025	2024	2025	2020	2027	2020	2029	2050	2051	2052	205+		
		Run III						R	Run IV					Run V		
LS2						LS3					LS4					
LHCb UPGF	40 MHz RADE I	$\begin{array}{c} \mathbf{L} = 2 \ x \ 10^{33} \\ \mathbf{L} = 2 \ x \ 10^{33} \\ \mathbf{Co} \end{array}$				lidate: L	Jpgr Ib	L	$L = 2 x 10^{33} 50 fb^{-1}$			LHCb UPGRADE II		$L=1-2x \ 10^{34} \\ 300 \ fb^{-1}$		
ATLAS Phase I Upgr $L = 2 \times 10^{34}$				ATLAS	II UPO	GRADE	L	$HL-LHC$ $L = 5 x 10^{34}$			ATLAS		.HC x 10 ³⁴			
CMS Phase I	IS 300 fb ⁻¹			CMS Phase II UPGRADE						CMS		3000	0 fb-1			
Belle II	5 ab ⁻¹		L = 8	x 10 ³⁵	50	ab ⁻¹	LHC schedule: Frederi							ck Bordry, Jun 2015		
	Belle	II					2016	6 2017 2018 20					2019			
– L=5x10 ³³ cm ⁻² s ⁻¹ achieved!							Phase 1 Phase 2 Phase 3									
- Physics with VXD in 2019							April 2018: Beam collisions with QCS. VXD not yet installed Expected luminosity: 20 fb ⁻¹									
Niels Tuning, ICHEP 2018 R. Cheaib, Moriond, 12 Mar 2018, arXiv:1802.013												2.01366				

Global perspective -> future

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
		F	Run III					Run IV					Run V	
LS2						LS3					LS4			
LHCb 40 MHz UPGRADE I $L = 2 \times 10^{33}$		LHCb Consolidate: Upgr Ib			L	$L = 2 x 10^{33} 50 fb^{-1}$		LHCb UPGRADE II		$L=1-2x \ 10^{34} \\ 300 \ fb^{-1}$				
ATLAS Phase I Upgr		L =	= 2 x 10	34	ATLAS Phase	II UPO	GRADE	$HL-LHC$ $L = 5 \times 10$		C 0 ³⁴	ATLAS		$HL-LHC$ $L = 5 \times 10^{34}$	
CMS Phase I Upgr			300 fb ⁻¹		CMS Phase	II UPO	UPGRADE				CMS		3000	0 fb-1
Belle $5 ab^{-1}$ $L = 8 x 10^{35}$ $50 ab^{-1}$											HC schedu	le: <u>Frederic</u>	k Bordry, 1	Jun 2015
pgrade	e studio	es are s	tarting				2016		2017		2018		2019	
Luminosity							Phase 1 Phase 2 Phase 3							
Polarization							April 2018: Beam collisions with QCS. VXD not yet installed							
antastic physics potential							Expected luminosity: 20 fb-1							
	neis iu	ning, ic		110					R	. Cheaib, M	loriond, 12	2 Mar 2018,	arXiv:180	2.01366

Conclusions and outlook

- Belle II has completed the initial data taking (Phase 2)
 - Understanding the machine and the backgrounds
 - Detector and software checkout
 - Initial physics
- Detector completion is progressing well
 - VXD successfully installed a few weeks ago
- The physics run will start in March 2019
 - All efforts to ensure a rapid luminosity ramp up and a 9 months/year running period
- Hope to shed light on the new physics hints currently observed (and maybe more!)

