

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Status of the Belle II experiment (and its first results)

Rencontres de Moriond 2019 (QCD) La Thuile, March 25th 2019 Umberto Tamponi tamponi@to.infn.it

INFN - Sezione di Torino

The Belle II detector

The Belle II experiment: a timeline

What is "phase 2"?

The first Belle II results

Phase 2 lasted from April 26th to July 17th

- ightarrow 0.5 fb⁻¹ of collisions at Y(4S)
- $ightarrow 0.55 imes 10^{34} \ cm^{-2} s^{-1} \ maximum \ luminosity$

Goals

- \rightarrow Verify the nano-beam collision scheme
- → Commission the detector
- \rightarrow Produce some physics result?

The accelerator

Super-KEKB target

e⁺e⁻ collision at finite crossing angle

Brute force: Increase the current (x2)

Precision: denser beams, smaller β^* (x20)

Nano-beam scheme

- 1) Large Piwinski angle by large θ and small σ_x $\phi = \frac{\sigma_z}{\sigma_x} tg \left(\frac{\theta}{2}\right) \approx \frac{\sigma_z}{\sigma_x} \frac{\theta}{2}$
- 2) Very small β $\beta_y^* \approx \frac{\sigma_x}{\rho} << \sigma_z$
- 3) Non-linear optics (suppress beam-beam resonances)

Measuring a nanometric beam

- ◆ How to measure the vertical size of the beams?
 - Measure the luminosity with our fast diamond detector while the machine people moves the beam vertically.

Interaction region size

Beam spot ~ 10 times smaller than KEKB

The detector

Vertexing: impact parameter resolution

MC (Belle II) and Cosmics (Belle)

Vertexing: impact parameter resolution

Belle II data: bhabha events

- \rightarrow measured 12.1 μ m, expected \sim 10 μ m
- \rightarrow PXD contribution is crucial

Tracking

 $M(e^+e^-)$ (GeV/c²)

 $m(\mu^+\mu^-)$ (GeV/c²)

An example of combined Particle ID

TOP + dE/dx from the drift chamber

Some physics: τ rediscovery

First re-measurement of the tau mass

Some physics: Full reconstruction

Recursive reconstruction algorithm:

- \rightarrow Reconstruct B⁰ or B⁺ in 5000+ modes (tag B)
- → Essential reconstruct events with missing energy

Conclusions

The Belle II experiment has successfully concluded the phase 2 pilot run:

- \rightarrow Basic detector performance is satisfactory
- → Nano-beam scheme has been realized

Phase 3 is starting

- → Full physics run
- \rightarrow 20 fb⁻¹ by the summer 2019

Any physics out of phase 2?

- $\to \mathsf{Yes!}$
 - \rightarrow Search for axion-like particles in ee $\rightarrow \gamma \gamma \gamma$
 - \rightarrow Search for **Z'** in ee \rightarrow 4l

Backup

What is "phase 3"?

Particle Identification

The TOP is a "DIRC in the time domain"

- ightarrow Cherenkov light trapped and propagated to the readout in a wide bar of fused silica
- ightarrow The Cherenkov angle is measured by the **time of propagation** rather than the ring image on the PMT surface

Visualizing the Cherenkov rings

Super-KEKB: energy and limitations

Super-KEKB is technically an accumulation ring

- → All the acceleration phase is done in the LINAC
- → RF only to sustain the beams (continuous injection!)

Current max Ecm = ~ 11.02 GeV, a bit above Y(6S) Achievable max Ecm = ~ 11.24 GeV, at $\Lambda_{b} \overline{\Lambda}_{b}$ threshold

The TOP counter at Belle II

TOP implementation in Belle II:

- ightarrow 16 modules (or slots) arranged around the interaction point
- ightarrow Each module is made of two identical bars of fused silica glued together
- → Backward side: expansion prism, PMTs and readout

→ Forward side: spherical mirror

QWG 2019! May 13-17 Torino

https://agenda.infn.it/conferenceDisplay.py?confld=15632

Belle case 1999 data

Belle case 1999 data

