LHCb and Belle II Overview

Abi Soffer Tel Aviv University

On behalf of the Belle II and LHCb collaborations

Fifth workshop of the LHC LLP Community, CERN, May 2019

Outline

- Comparison of the two experiments
- LLP results from LHCb
- LLP results from BABAR & Belle
- Belle II operation status
- Some additional Belle II LLP prospects
- Points for discussion / thoughts

Competition and Complementarity

(Caveat: generic statements, impact is analysis dependent)

Property	LHCb	Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1
$\int L dt$ (fb ⁻¹) by ~2027	~25	~50,000
Background level	High	Low
Typical efficiency	Low	High
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Very good
Collision spot size	Large ($10 \times 10 \times 10^5 \mu m^3$)	Tiny (6×0.06× $10^2 \ \mu m^3$)
LLP-sensitive Size	Large	Small
Typical boost of LLP	Large	Small
Mass reach	High	Low
au physics capability	Limited	Excellent

LLP searches at LHCb

LHCb searches in $B \to K^{(*)}\chi(\to \mu^+\mu^-)$

A. Soffer, LHC LLP Workshop, May 2019

LHCb search in μ + jets

EPJC (2017) 77:224 7 & 8 TeV, 3 fb⁻¹

Has this be compared with, e.g., ATLAS (PRD 92 (2015) 072004)?

A. Soffer, LHC LLP Workshop, May 2019

LHCb search for displaced dijet

LHCb search for displaced dark photon

e⁺e⁻ B-factory results before Belle II: BABAR & Belle

BABAR LLP search

PRL 114, 171801 (2015) 490 fb⁻¹

- Production-model independent analysis
- Just assume LLP \rightarrow 2 tracks

- Minimal material veto
- Search for mass peak
- Model-independent limits to be used with efficiency tables vs. p_T , $c\tau$, m.
- For given model, less sensitive than dedicated search

A. Soffer, LHC LLP Workshop, May 2019

BABAR dark-photon/Higgs search

PRL 119 (2017) 131804

- Require only 1 γ
- Calculate recoil mass
- $1-\gamma$ trigger available only for 53 fb⁻¹
- Background from $e^+e^- \rightarrow \gamma\gamma$ with a $\gamma \rightarrow$ ECAL crack, if not seen in muon system

Example fit to recoil mass

A. Soffer, LHC LLP Workshop, May 2019

Belle search for heavy neutral lepton (HNL)

PRD 87, 071102 (2013) 772×10⁶ $B\overline{B}$ events

Require prompt lepton and $\ell \pi$ disp. vtx. For $m_{\nu_h} < 2$ GeV, require recoil mass ~ m_D

Belle search for heavy neutral lepton (HNL)

Belle II status

Moore's law of collider luminosity

A. Soffer, LHC LLP Workshop, May 2019

40-fold increase in luminosity wrt. Belle

Nanobeams at SuperKEKB (Belle II)

A. Soffer, LHC LLP Workshop, May 2019

2019 machine performance

- Integrated luminosity sufficient for commissioning studies
- Peak luminosity $\sim 1/6$ that of Belle
- At design luminosity, beam lifetime is O(minutes)
- Necessitates "continuous injection", started last month: (also used @ BABAR & Belle)

L [10³² cm⁻²s⁻¹]

Spec L [10³⁰]

A. Soffer, LHC LLP Workshop, May 2019

2018 detector performance

A. Soffer, LHC LLP Workshop, May 2019

Reconstructed semileptonic *B* decays

Some studies of LLPs at Belle II

See also Belle II Physics Book, <u>1808.10567</u>

Magnetic monopoles

Most searches focus on high-charge monopoles. g = O(e) range not well constrained. Low $dE/dx \rightarrow$ fewer hits \rightarrow low tracking efficiency (no $1/\beta^2$ factor)

Projected sensitivity with early phase-3 data (20 fb^{-1})

Trigger: $\Delta \phi \sim \pi$ ECAL clusters Dedicated tracking:

$$z(s) = z_0 + \frac{p_z}{p_T}s + \frac{gBm}{2p_T^2}s^2$$

Axion-like particle (ALP)

HNL that mixes predominantly with ν_{τ}

Dib, Helo, Nayak, Neill, AS, Zamora-Saa, in preparation

A. Soffer, LHC LLP Workshop, May 2019

Points for discussion / personal thoughts

- LHCb and Belle II (will) have unique LLP sensitivities
- LHCb has probed:
 - a LL dark γ in the difficult, vector-portal-only scenario
 - muonic decays of LLPs from *B*-meson decays
 - ATLAS & CMS can probably compete (given success with $B_s \rightarrow \mu\mu$)
 - Higgs \rightarrow LLP decays, exploiting soft-trigger capability
 - ATLAS & CMS compete with VH/VBF, and ggF + dedicated triggers
 - EW-scale SUSY scenarios
 - comparison to ATLAS/CMS not clear to me (but probably known at LHCb)
- Belle II has best sensitivity in:
 - mono-photon scenarios
 - LLPs related to the τ lepton
 - (probably) non-muonic decays of LLPs from B/D-meson decays
- Additional ideas sure to arise
 - E.g., see talks at previous LLP workshops