Dark Sector Searches at B-Factories

QWG 2019 – The 13th international Workshop on Heavy Quarkonium Torino – 2019, May 13th – 17th

INFN and University of Pisa on behalf of the BaBar and Belle II Collaborations

Laura Zani

Outline

- Motivation
- B-Factories, first and second generation
- Bottomonium and dark matter:
 - $\Upsilon(1S)$ invisible decays
 - $\quad X_{_{b0}} \to \tau\tau$
- Summary

Dark Sector: Introduction

Many astrophysical observations provide evidence for the existence of a kind of matter that almost does not interact with the Standard Model (SM) particles (*mostly* gravitational interaction) \rightarrow **Dark Matter (DM) Direct Method DISTRIBUTION OF DARK MATTER IN NGC 3198** How to search it? NGC 3198 1) Detect the energy of *nuclear recoil* 150 halo V_{cir} (km/s) Flat rotational **Indirect Method** 100 curves 2) Detect the flux of visible particles 50 produced by *DM* annihilation and decay $v(r) = \sqrt{M(r)}/r$ disk **Collider Method** Radius (kpc) 3) DM weakly couples to SM particles and it can be produced in *SM-particles* annihilation at colliders \rightarrow In this presentation I will focus on the search at electron-positron colliders ensing

B-Factories: the high intensity frontier

B-factories: dedicated experiments at e^+e^- asymmetric-energy colliders for the production of quantum coherent BB pairs \rightarrow **CPV studies**.

$$e^+e^- \rightarrow \Upsilon(4S) \ [10.58 \text{ GeV}] \rightarrow B\overline{B}$$

 $\Upsilon(nS) = bound state of b quark and b anti-quark$

First generation of B-factories

at the KEKB collider (KEK, Japan)

at the PEP II collider (SLAC, California)

• Clean environment \rightarrow lower background, high resolution				
• Hermetic detector with excellent PID				
capability $ ightarrow$ efficient reconstruction of				
<i>neutrals</i> (π^0 , η ,), recoiling system and				
<i>missing energy</i> final states				

B-Factories: the high intensity frontier

B-factories: dedicated experiments at *e*+*e* - *asymmetric-energy colliders* for the production of quantum coherent BB pairs \rightarrow **CPV studies**. $\Upsilon(nS) = bound state of$ $e^+e^- \rightarrow \Upsilon(4S)$ [10.58 GeV] $\rightarrow B\overline{B}$ b quark and anti-quark First generation of B-factories Clean environment \rightarrow lower background, $> 1 ab^{-1}$ 1200 **On resonance :** $Y(5S): 121 \text{ fb}^{-1}$ at the KEKB collider KEKB -PEP-II $\gamma(4S): 711 \text{ fb}^{-1}$ **Rich physics program:** (KEK, Japan) 1000 $Y(3S): 3 \text{ fb}^{-1}$ $Y(2S): 25 \text{ fb}^{-1}$ Discovery of CPV in B mesons $Y(1S): 6 \text{ fb}^{-1}$ 800 **Off reson./scan:** $\sim 100 \text{ fb}^{-1}$ ✓ SM test, precision flavor physics 600 $513.7 \pm 1.8 \text{ fb}^{-1}$ **On resonance:** Rare/suppressed/forbidden processes 400 *Y*(4S): 424 fb⁻¹, 471 M *Y*(3S): 28 fb⁻¹, 122 M *Y*(2S): 14 fb⁻¹, 99 M at the PEP II collider Search for new particles (quarkonium) 200 **Off resonance:** (SLAC, California) 48 fb^{-1} Search for light Dark Sector and mediators (**772** + **471**)x10° BB 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Second Generation: SuperKEKB

Belle II Detector

• The Belle II detector has better resolution, PID and capability to cope with higher background

Dark Sector at B-Factories

- Possible sub-GeV scale scenario: light dark sector weakly coupled to SM through a light *mediator X*
 - [–] Scalar portal \rightarrow Dark Higgs/Scalars
 - Vector portal ightarrow Dark Photon A'
 - [–] Pseudo-scalar portal \rightarrow Axion Like Particles (ALPs)
 - [–] Neutrino portal \rightarrow Sterile Neutrinos

Dark Sector @B-Factories (II)

(ALPs)

- Possible sub-GeV scale scenario: light dark sector weakly coupled to SM through a light *mediator X*
 - − Scalar portal → Dark Higgs/Scalars
 - Vector portal \rightarrow Dark Photon A'
 - Pseudo Invisible final state
 N
 + single photon
- \rightarrow Search for CP-odd light Higgs at dipion transition $\Upsilon(2S) \rightarrow \pi + \pi \Upsilon(1S)$
- BaBar 2011 (PRL107,021804)
- Belle 2019 (PRL122, 011801)
- Belle II prospects

See K.Chilikin's talk on Friday

- BaBar 2017 (PRL119, 131804)
- Belle II prospects

L.Zani, Dark Searches at B Factories - QWG 2019, Turin

H

Higgs

C

charm

S

strange

μ

muon

muon

e

electron

electron

12.2 10/10

PTONS

b

photon

Z boson

W boson

Portal X

80 4 Gel//r

bottom

Standard Model

Hidden Sector

$\Upsilon(1S)$ invisible decays

- * $\mathsf{BR}(\Upsilon(1S) \rightarrow \mathsf{inv})$ is well calculable in SM
- DM candidates could enhance the branching ratio, if $\Upsilon(1S) \rightarrow \chi \chi$ kinematics allows
- New mediators (Z', A⁰) may also contribute
- In absence of NP observation, **Belle 11** can measure the BR $(\Upsilon(1S) \rightarrow \nu \nu)!$

$$\frac{BR(Y(1S) \rightarrow v\bar{v})}{BR(Y(1S) \rightarrow e^+e^-)} = \frac{27G^2M_{Y(1S)}^4}{64\pi^2\alpha^2} \left(-1 + \frac{4}{3}\sin^2\theta_W\right)^2 = 4.14 \times 10^{-4}$$

BR(Y(1S) \neq v\bar{v}) \neq 9.9 \times 10^{-6}

 $\Upsilon(1S) \rightarrow \gamma DM DM$

* Fernandez, Seong, Stengel, PRD93, 054023, (2016)

$\Upsilon(1S) \rightarrow \gamma$ DM DM: Analysis Strategy

- Select events with 2 tracks + one single photon + missing energy (nothing else in the detector)
 - \rightarrow *Experimental challenges:*

M, Vs E*、

1) low-momentum pions (CDC information only, ~10% contamination) 14.4 fb⁻¹ \rightarrow ~ 98x10⁶ Υ (2S)

2) dedicated hardware trigger lines for low-multiplicity events (efficiency depends on the mass region)

- Define the squared recoil mass of the dipion system as: $M_r^2 = s + M_{\pi^+\pi^-}^2 - 2\sqrt{s}E_{\pi^+\pi^-}^{CMS}$
- Extract the signal from an extended unbinned maximum likelihood scan in $\rm m_\chi$, $\rm m_{A0}$ of the 2D distributions :

$$\mathbf{M}^{2}_{r}$$
 Vs \mathbf{M}^{2}_{miss} , with \mathbf{M}^{2}_{miss} the square missing mass of the system $\mathbf{M}^{2}_{miss} = (\mathbf{P}_{e+e} - \mathbf{P}_{\pi+\pi} - \mathbf{P}_{\gamma})^{2}$

$$\pi \qquad \pi$$

Signal: excess of events peaking in
the M_r distribution at $\Upsilon(1S)$ mass,
9.460 GeV

Y(1S)

4.4%

$\Upsilon(1S) \rightarrow \gamma \text{ DM DM}$: Background

Suppression

- Bremsstrahlung contamination
- QED background with charged escaping detection: e + e - $\rightarrow \gamma \pi^+\pi^-$
- Sontinuum Neutral hadron radiative decays (not detected in EM calorimeter): $\Upsilon(1S) \rightarrow \gamma K_{I} K_{I}$
- 2-photon events, $e^+e^- \rightarrow e^+e^-\gamma*\gamma* \rightarrow e^+e^-\eta'$, η' ٠ BaBar Phys.Rev.Lett.103:251801 (2009) $ightarrow \gamma \pi^+ \pi^-$ ວ 2 800 ອີ 700 Peaking $\Upsilon(2S) \rightarrow \tau \tau (\rightarrow \pi \nu_{\tau})$ 500 400not seen 200 100 \rightarrow Estimated from MC 9.42 9.44 9.46 9.48 95 M_{rec} (GeV/c²) simulation, irreducible background

- Multivariate method to reject *continuum* using • dipion system kinematics variables
- Angular isolation: minimum angle between photon direction and the charged tracks/dipion system
- Require clean 20° cone in the direction opposite to the primary photon

Selection optimization

	Maximized figure				
	of merit:	Signal efficiency:			
	E /1.5 +√B	2-11% (MVA method)			
BELLE	S/√B	0.001-14% (linear cuts)			
	Lower trigger efficiency at high				
	masses due to low energy photons				

L.Zani, Dark Searches at B Factories - QWG 2019, Turin

9.52

$\Upsilon(1S) \rightarrow \gamma \text{ DM DM}$: Results

$\Upsilon(1S) \rightarrow \gamma$ DM DM: Belle II prospects

Other possibilities at $\Upsilon(3S)$...

- The decay to third generation leptons of the scalar bottomonium $X_{_{b0}}\to\tau\tau$ is highly suppressed in the SM
- Sensitive to *s*-channel exchange of CP-even neutral Higgs bosons via $\Upsilon(3S) \rightarrow \gamma X_{_{b0}} \rightarrow \gamma \tau \tau$

Rare leptonic decays

BR depends on
 M_{NEW} and tanβ

Its measurement
 can constrain type-II
 2-Higgs-Doublet Model*

* Phys. Rev. D 93, 055014

Rare leptonic decays (II)

- The decay to third generation leptons of the scalar bottomonium $X_{b0} \rightarrow \tau \tau$ can constrain type-II 2HDM models*
- Sensitive to *s*-channel exchange of CP-even neutral Higgs bosons via $\Upsilon(3S) \rightarrow \gamma X_{b0} \rightarrow \gamma \tau \tau$
- BR depends on M_{NEW} and $tan\beta$
- 95%CL sensitivity curve, assuming to reject all reducible background

$$\begin{split} &\mathsf{BF}[\mathsf{Y3S}\to\gamma\chi_{_{b0}}\;(\mathsf{nP})]\sim5.9~\%\\ &\sigma[\mathsf{e}^+\mathsf{e}^-\to\gamma\chi_{_{b0}}\;(\mathsf{nP})]\sim0.2~\mathsf{nb} \end{split}$$

* Phys. Rev. D 93, 055014

Fig. 212: 5σ discovery and 95% confidence level (CL) exclusion reach in the Type-II 2HDM from 250 fb⁻¹ of data on the $\Upsilon(3S)$. The sensitivity is to the regions to the left of the solid

...and in the continuum: Dark Photon

A possible extension of the SM include a new massive $(m_{A'})$ gauge boson A' of spin = 1 coupling to the SM se⁺e⁻→γ A (nb) through the kinetic mixing with strength $\varepsilon \rightarrow$ the *dark photon* 100 $|\cos(\theta^*)| < 0.933$ imulation /iv/1008.0636 At e^+e^- colliders we investigate the ISR production $e^+e^- \rightarrow \gamma A'$. 80 $\mathcal{E} = 1$ mm $\mathcal{L} \supset \varepsilon A'_{\mu} J^{\mu}_{\mathrm{SM}}$ 60 *l*-,χ 40 MadGraph based on (20 $l^+, \overline{\chi}$ e⁺ 2 8 10 6 • If $m_{\chi} < 1/2 m_{A'} \rightarrow A'$ decays into DM particle, $e^+e^- \rightarrow \gamma + A'$, $A' \rightarrow \chi \chi$ m_{A'} (GeV) ANALYSIS STRATEGY: - Nothing in the event but a single high energetic **ISR photon** – Look for a bump in the recoil mass spectrum $M_{x}^{2} = s - 2E_{v}^{*}\sqrt{s}$ **53** fb⁻¹ $\sim 10 \text{ fb}^{-1} \text{ good quality data}$ ⁻ Background contribution from $e^+e^- \rightarrow e^+e^- \gamma(\gamma)$, $e^+e^- \rightarrow \gamma\gamma(\gamma)$

Dark photon: Results

- Belle II advantages:
 - No ECL cracks pointing to the Interaction region
 - KLM can compensate ECL photon detection gap
 - ✓ Better hermeticity
 - ✓ Improved L1 trigger lines
- Complementary to dark searches in *bottomonium*:
 - Different mediator type (spin)
 - Different contaminating backgrounds
 - Different experimental challenges

Summary

First generation B-factories still can provide competitive results constraining light dark matter models, involving dark sector Higgs mediators, through the search for *invisible decays of bottomonium*

Main limit is $\textit{statistics} \rightarrow \text{currently upper limits only}$

>200 fb⁻¹ collected at $\Upsilon(3S)$ **@Belle II** may lead to observation of 30-300 events of $\Upsilon(1S) \rightarrow invisible$ (assuming 10⁻⁵ (SM) < BR($\Upsilon(1S) \rightarrow invisible$) < 10⁻⁴ (NP) + Belle efficiencies)

 \rightarrow Interplay with theory needed to connect direct and indirect searches and effectively constrain dark sector models!

A rich dark sector program is under investigation @Belle II, both at bottomonium resonances and in continuum (Invisible Dark Photon, Invisible Z', ALPs and much more...The Belle II Physics Book, arXiv:1808.10567)

Magnetic monopole	Inelastic Dark
• Muonic dark forces	Matter
Dark Higgs/Higgstrahlung	Long-lived particles
Dark scalars	•

Summary

First generation B-factories still can provide competitive results con involving dark sector Higgs mediators, through the search for invis	nstraining light dark matter n Tible decays of bottomon	models, <i>ium</i>
Main limit is sta	Now collecting	r data
$\sum_{\text{Belle II}} >200 \text{ fb}^{-1} \text{ collec}$ $10^{-5} \text{ (SM)} < \text{BR}$	Data analysis	s is
→ Interplay w constrain dark	ea starting!	
A rich dark sector program is under investigation @Belle II,	Magnetic monopole	Inelastic Dark
both at bottomonium resonances and in continuum (Invisible	Muonic dark forces	Matter
Dark Photon. Invisible Z', ALPs and much moreThe Belle II	Dark Higgs/Higgstrahlung	 Long-lived particles
Physics Book, arXiv:1808.10567)	Dark scalars	•

Backup

SuperKEKB Numbers

2017/September/1	LER	HER	unit	
E	4.000	7.007	GeV	
	3.6	2.6	А	
Number of bunches	2,500			
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		include <mark>s</mark> beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σ_{δ}	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
$T_{x,y}/T_s$	45.7/22.8	58.0/29.0	msec	
ξ×/ξγ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	

Belle II Data Taking: Phase 2

70

60

50

Phase 2 (April 26th- July17th 2018)

- Pilot run with only 1/8th VXD
- Verify nano-beam scheme, commission the detector and measure the background level
- Max peak luminosity 0.5×10^{34} cm⁻² s⁻¹

Goal of Belle II

Belle II Data Taking: Phase 3

<u>Phase 3 (March 2019 –)</u>

- VXD detector installed \rightarrow 4 full layers of silicon strips \rightarrow 1 + 1/6 full layers of pixels (complete installation ~2020)
- 20 fb⁻¹ by summer 2019

Belle II Performances: photon reconstruction $\pi^0 \rightarrow VV$ $e^+e^- \rightarrow \mu\mu\gamma$ After just ONE DAY of data taking! Entries / (0.001 GeV/c² 1.00 GeV < p(recoil) < 8.00 GeV Entries / (0.001 GeV/c²) Events / (0.02) Belle II 700 1.5 L dt = ~5 pb- Data 2018 (Preliminary) 600 - Fit E, > 0.15 GeV W 500F 1.0 🕂 Data Belle II 2018 (Preliminary) 400 $L dt = 250 \text{ pb}^{-1}$ 300 0.5 $\mu_{ee} = 0.997 \pm 0.001$ 200 100 0.0 0.10 0.12 0.18 0.08 0.14 0.16 $m_{\gamma\gamma}$ (GeV/c²) 06 0.8 Pull GOOD CONDITIONS for DARK 0.6 0.8 E(ECL) / p(recoil) **SEARCHES** 2024 2023 2017 Tracking and cluster L1 trigger $e^+e^- \rightarrow \gamma X$ Bhabha veto L1 $e^+e^- \rightarrow \gamma \ ALPS \rightarrow \gamma(\gamma\gamma)$ Single Photon L1 trigger

 $\Upsilon(1S) \rightarrow \gamma \text{ DM DM}$

ArXiv: 1511.03728, 1404.6599

$\Upsilon(1S) \rightarrow \gamma \text{ DM DM}$: BaBar Constraint

FIG. 5: Upper limits on the product $g_{\Upsilon} \times \sqrt{\mathcal{B}(A^0 \to \text{invisible})}$ at 90% C.L. as a function of m_{A^0} . The parameter g_{Υ} is an effective coupling of the CP-odd Higgs A^0 to bound state $\Upsilon(1S)$; in NMSSM, $g_{\Upsilon} = \tan\beta\cos\theta F_{\Upsilon}$, where $\cos\theta$ is the fraction of non-singlet component in A^0 , $\tan\beta$ is the ratio of Higgs vacuum expectation values, and F_{Υ} is the effective form-factor (including the QCD and QED corrections). The theoretically preferred region in NMSSM [13] is $g_{\Upsilon} > 1$.

Trigger Considerations

Dark Photon to Invisible

Effect of selection on $E^*(\theta)$ for background rejection

Dark Photon to Invisible: Backgrounds

- Background dominated by QED processes:
 - $-e^+e^- \rightarrow \gamma \gamma (\gamma)$ where one photon is not detected (ECL gaps) and the second out of acceptance
 - radiative Bhabha $e^+e^- \rightarrow e^+e^- \gamma(\gamma)$ with the electron-positron pair out of acceptance.

Axion Like Particles (ALPs)

- Axion Like Particles are pseudo-scalars coupling to bosons
- Unlike for QCD Axions, there is no relation between the coupling and the mass
- Explored photon coupling g_{aγγ} in *ALP-strahlung* processes

```
(photon fusion: sensitivity under study)
```

- $\tau = 1/m_{_a}{}^2g^{_2}_{_a\gamma\gamma}$
 - Displaced vertex
 - $^-$ Long-lived particle

ALPs: Experimental Signature

- Signal signatures: 3 γ final state, several topologies \rightarrow 4 categories
- ALPS may also decay to invisible (DM) ightarrow single photon topology

ALPs: Sensitivity

Belle II Electromagnetic Calorimeter (ECL)

Dark Photon to leptons: Sensitivity

From Belle II Physics Book, arXiv:1808.10567

Fig. 211: Existing exclusion regions (90% CL) on the dark photon mixing parameter ε and mass $M_{A'}$ (solid regions) for $A' \to \ell \ell$, with projected limits for Belle II and other future experiments (lines) (Figure reproduced from [1820]).

Z' to Invisible: L_{μ} - L_{τ} model

- New gauge boson Z' coupling only to the 2^{nd} and 3^{rd} generation of leptons $(L_{\mu}\text{-}L_{\tau}\,)$

Detecting the L_{μ} - L_{τ} gauge boson at Belle II, arXiv:1702.01497

- May explain the $(g\mathchar`-2)_\mu$ anomaly
- BR(Z' \rightarrow inv) may be enhanced by the presence of kinematically accessible DM (e.g. sterile neutrinos)

* If LDMA is accessible, $\mathsf{BR}(\mathsf{Z}' \to \mathsf{DM}) {\sim} 1$

Z' to Invisible @Belle II

- Data validation and analysis optimization under finalization on Phase 2 samples, L=276/pb
- Results from simulation studies

L.Zani, Dark Searches at B Factories – QWG 2019, Turin

LFV Z': invisible and visible channel

What if symmetries of SM are not kept in the Dark Sector?

What if DM violates Lepton Flavour?

One can imagine, for example, $e\mu$ coupling

 $e^+e^- \rightarrow e^+\mu^- Z'$; $Z' \rightarrow invisible$ Dominant background: $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$, $\tau^{\pm} \rightarrow \mu^{\pm}$, $e^{\pm}\nu\nu$

 $e^+e^- \rightarrow e^+\mu^{--}Z'$; $Z' \rightarrow e^+\mu^- + c.c.$ no SM background