(Tau) Flavor Physics at Belle II

Flavor 2019: new Physics in flavor from LHC to Belle II

Francesco Tenchini May 20th, 2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline

- SuperKEKB and the Belle II experiment
- Commissioning run and results with early data.
- Prospects, focusing on Tau physics.
 - See also:
 - ► Quarkonium Prospects → Vladimir Savinov
 - (Semi)leptonic results with early data \rightarrow Lu Cao
- Summary and Outlook

SuperKEKB @KEK, Tsukuba

- New facility to search for BSM physics by studying B, D and T decays.
- Asymmetric electron-positron collider.
- Major upgrade to the KEKB accelerator with x40 the design luminosity (8x10³⁵ cm⁻²s⁻¹).
 - **x2** raw beam current.
 - x20 smaller beam spot (σ_y*=50 nm) with new nano-beam collision scheme
- First beams and commissioning in 2016

SuperKEKB as a Flavor Factory

- Asymmetric beams colliding at (or near) the Y(nS) resonances
 - $\sigma(e^+e^- \rightarrow \Upsilon(4S)) = 1.05 \text{ nb}, \quad \sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$
- Not just a B-factory, but also a charm and τ factory

- Over its operation, Belle II plans to collect 50ab⁻¹ of collision data (vs ~1ab⁻¹ of Belle)
- Unique environment for precision flavor measurements

"Phase 2"

- Follows from Phase 1 (accelerator commissioning)
- Pilot run to test nano-beam scheme
 - Partial vertex detector (2 PXD + 4 SVD modules)
 - BEAST II: commissioning detector to study beam and background conditions

First Collisions - April 2018

Thightening the Luminous Region

• Key to high luminosity is strong vertical focusing of beams to $\sigma_y = 50$ nm

Possible thanks to rapid feedback between accelerator team and tracking group

Phase 2 Operation: April-July 2018

Physics Rediscovery

▶ 472 pb⁻¹ of physics data^G <u>→</u> firsturediscoveries of known processes

Figure 1: This figure shows the invariant mass distribution of $J/\psi \rightarrow e^+e^-$ candidates in

 $m(u^{\dagger}u^{-})$ (GeV/c²)250 pb⁻¹ of collision data, in the mode $D^{*+} \rightarrow D$

First B Mesons

B pairs produced on Y(4S) threshold (at rest in CMS frame)

Tau Observation

- Preliminary study and preparation for future analyses
- 3x1-prong topology:
 - $\bullet \quad \boldsymbol{\tau}_{signal} \rightarrow 3\pi \boldsymbol{\nu} \ (+n\pi^0), \ \boldsymbol{\tau}_{tag} \rightarrow \boldsymbol{\ell} \boldsymbol{\nu} \boldsymbol{\overline{\nu}} / \pi \boldsymbol{\nu}$
 - Identified through event thrust = $\sum_{h} \frac{\vec{p} \cdot \hat{T}}{|p_h|}$
- Dominant backgrounds: $q\overline{q}$ and $ee\gamma$ (radiative Bhabha)

Tau Observation

- Correct for trigger efficiency (3+ tracks in CDC) \rightarrow 291 fb⁻¹ useable data
- After correction, good agreement between data and MC

Tau Mass Measurement

Fit with empirical edge function

• Measurement in the exclusive $\tau \rightarrow 3\pi\nu$ channel using pseudomass technique developed at ARGUS:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$

- First $\boldsymbol{\tau}$ physics result from Phase 2
- Good agreement with existing measurements!

Phase 3 Preparations

BEAST II extraction

RVC opening and QCS extraction

Phase 3 Preparations

PXD mounted on beam pipe at KEK

PXD combined with one half of SVD

 \rightarrow Full PXD operation (with 2 layers) scheduled for 2020

Start of Phase 3

- Regular operation started again in March
- Already collected 0.5 fb⁻¹, comparable with Phase 2
- Continuous injection for ~60% luminosity increase
- Current goal is keeping beam background in check

au event candidate

Π

Π

U

Π

Phase 3 Studies

- Belle II is expected to deliver 50 ab⁻¹ between 2019-2027, enabling a rich τ physics program.
- Covered in detail in the **Belle II Physics Book** (arXiv:1808.10567)
- Already underway (feasible with ~1fb⁻¹):
 - Branching ratio of main τ decay modes
 - τ mass measurement
 - $\tau \rightarrow \ell \alpha$ (invisible)

- Under preparation:
 - $\tau \rightarrow \eta \pi \nu$ (Second Class Currents)
 - CP Violation in $\tau \rightarrow K_s \pi (+n\pi^0) \nu$
 - τ Lepton Flavor Violation

Search for $\tau \rightarrow \ell + \alpha$ (invisible)

- Last studied at ARGUS using 0.5 fb⁻¹ \rightarrow Belle II is already competitive
- Study the lepton momentum spectrum in the τ frame:
 - Exploit same 3x1 topology as the mass measurement: $\tau_{tag} \rightarrow 3\pi \nu$, $\tau_{signal} \rightarrow \ell \alpha$
 - $E^*(\tau) = \sqrt{s/2}$ and $\vec{p}(3\pi) \sim \vec{p}(\tau) \rightarrow \text{signal } \tau$ frame can be approximated.
- Sensitivity is mostly independent from the α mass:

Second class currents in $\tau \rightarrow \eta \pi \nu$

- In the SM, the τ→ηπν decay proceeds through SCCs (isospin-violating, e.g. π-η mixing):
 - SM prediction: BR ~ O(10⁻⁵)
- Searched for at last-gen B factories but not observed:
 - ▶ Belle: BR < 7.3 x 10⁻⁵
 - ▶ BaBar: BR < 9.9 x 10⁻⁵
- Observation becomes possible at Belle II
 within the first years of data taking (1 ab⁻¹)
- Large deviation could indicate New Physics!
- An accurate measurement could also apply strong bounds to NP models.

CP Violation in the Tau sector

 CP violation in the Kaon sector induces a decay rate asymmetry in the SM:

$$A_{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K^0_s \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \pi^- K^0_s \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K^0_s \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \pi^- K^0_s \nu_{\tau})}$$

- ▶ SM prediction: (3.6 ± 0.1) × 10⁻³
- **BaBar:** $(-3.6 \pm 2.3 \pm 1.1) \times 10^{-3}$ (**2.8** σ deviation)
- High priority improved measurement at Belle II

CP Violation in the Tau sector

 $A_i^{CP} \simeq \langle \cos\beta \cos\psi \rangle_{\tau^-}^i - \langle \cos\beta \cos\psi \rangle_{\tau^+}^i$

• Charged scalar boson exchange could also induce CPV, which would then be detected as a difference in the decay angular distributions for $\tau \rightarrow P_1 P_2 \nu_{\tau}$:

 $\cos \beta \rightarrow measured$

 $\cos \psi \rightarrow decay$ kinematics

Studied at Belle

Ζ

With 50 ab⁻¹ of data, Belle II is expected to provide a √70 more precise measurement:

|*A_{CP}*| < (0.4-2.6) × 10^{−4}

(assuming central value $A^{CP} = 0$)

Charged Lepton Flavor Violation

- epton flavor is conserved in the SM (accidental symmetry).
- Observed in the neutral sector (ν oscillation) \rightarrow first sign of BSM physics! $\mathcal{B}_{\nu SM}(\tau \to \mu \gamma) = \frac{3\alpha}{32\pi} \left| U_{\tau i}^* U_{\mu i} \frac{\Delta m_{3i}^2}{m_{\tau i}^2} \right|$
- Also implies (immeasurably small) cLFV:
- **Powerful probe for new physics!**
 - Several NP models enhance this process
 - $\mu \rightarrow e\gamma$: strong bounds from MEG
 - $\tau \rightarrow \ell \gamma$: weaker constraints from CLEO, BaBar, Belle, CMS...

 u_{μ}

W

 $\nu_{ au}$

N^NN

NP

 $< 10^{-40}$

Prospects for cLFV at Belle II

- Due to its mass, τ decays allow to probe for additional LFV/LNV couplings:
 - $\tau \rightarrow \ell \gamma, \tau \rightarrow \ell \ell \ell \ell$ but also $\tau \rightarrow \ell h(h)$
- Past experiments approached the regime sensitive to New Physics
- Belle II will push the boundaries by O(10) to rule out or confirm NP models 10⁻⁸

Conclusions and Outlook

- The Belle II commissioning phase has concluded, providing a pilot test of the new collision scheme as well as some preliminary physics measurements.
- Full detector operation has begun earlier this year in March.
- Belle II has a broad physics program to probe the τ sector for New Physics
- > Potential already exists for exciting results in the first years of data taking.

Thank you for your attention!