V_{cb} at Belle/Belle II

Flavor 2019: New Physics in Flavor from LHC to Belle II Munich Institute for Astro- and Particle Physics, May 20-22, 2019

|V_{cb}|from semileptonic B decays

 $d\Gamma \propto G_F^2 |V_{qb}|^2 \left| L_\mu \langle X | \bar{q} \gamma_\mu P_L b | B \rangle \right|^2$

	Experiment	Theory	HFLAV 2016:	
Exclusive V _{cb}	$B \rightarrow Dlv, D^*lv$ (low backgrounds)	Lattice QCD, light cone sum rules	V _{cb} excl (D*I∨): (39.05 +/- 0.75) x 10 ⁻³	
Inclusive V _{cb}	Inclusive $ V_{cb} $ B $\rightarrow X v$ (higher background)		V _{cb} incl: (42.19 +/- 0.78) x 10 ⁻³	

$$w = \frac{P_B \cdot P_{D^{(*)}}}{m_B m_{D^{(*)}}} = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}}$$

$$\mathbf{B} \to \mathbf{D^*} \mathbf{Iv} \qquad \frac{d\Gamma}{dw} = \frac{G_F^2 m_{D^*}^3}{48\pi^3} (m_B - m_{D^*})^2 \sqrt{w^2 - 1} \, \chi(w(\mathcal{F}^2(w)) V_{cb})^2$$

$$\mathsf{B} \to \mathsf{DIv} \qquad \qquad \frac{d\Gamma}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} \mathcal{G}^2(w) V_{cb}|^2$$

Form factor parameterizations

Caprini, Lellouch, Neubert [Nucl.Phys. B530, 153(1998)]

 $\begin{array}{l} \mathbf{B} \rightarrow \mathbf{D^*} | \mathbf{v} \\ \hline h_{A_1}(w) &= h_{A_1}(1) \begin{bmatrix} 1 - 8\rho^2 z + (53\rho^2 - 15)z^2 \\ -(231\rho^2 - 91)z^3 \end{bmatrix}, \\ R_1(w) &= R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2, \\ R_2(w) &= R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2, \\ \end{array} \right) \begin{array}{l} \mathbf{B} \rightarrow \mathbf{D} | \mathbf{v} \\ \mathcal{G}(z) &= \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3) \\ \end{array} \right) \\ \begin{array}{l} \mathbf{G}(z) &= \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3) \\ \mathbf{G}(z) &= \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3) \\ \end{array} \right) \\ \begin{array}{l} \mathbf{G}(z) &= \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3) \\ \mathbf{G}(z) &= \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3) \\ \end{array} \right) \\ \begin{array}{l} \mathbf{G}(z) &= \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3) \\ \mathbf{G}(z) &= \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3) \\ \end{array} \right) \\ \begin{array}{l} \mathbf{G}(z) &= \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3) \\ \mathbf{G}(z) &= \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3) \\ \end{array} \right) \\ \end{array}$

Boyd, Grinstein, Lebed [Phys. Rev. Lett. 74, 4603 (1995)]

$$f_i(z) = rac{1}{P_i(z)\phi_i(z)}\sum_{n=0}^N a_{i,n}z^n, \qquad z(w) = rac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}$$

Parameters: coefficients a_{i,n} Order N of the expansion a priori not defined by theory

Belle B \rightarrow D*Iv hadronic tag [arXiv:1702.01521]

Parameterization dependence?

• D.Bigi, P. Gambino, S.Schacht, Phys.Lett. B769 (2017) 441

BGL Fit:	Data + lattice	Data + lattice + LCSR
χ^2/dof	27.9/32	31.4/35
$ V_{cb} $ ($0.0417 \left({}^{+20}_{-21} ight)$	$0.0404 \begin{pmatrix} +16 \\ -17 \end{pmatrix}$
a_0^f	0.01223(18)	0.01224(18)
a_1^f	$-0.054\left(^{+58}_{-43} ight)$	$-0.052\left(^{+27}_{-15} ight)$
a_2^f	$0.2(^{+7}_{-12})$	$1.0 \begin{pmatrix} +0 \\ -5 \end{pmatrix}$
$a_1^{\mathcal{F}_1}$	$-0.0100\left(^{+61}_{-56} ight)$	$-0.0070\left(^{+54}_{-52} ight)$
$a_2^{\mathcal{F}_1}$	0.12 (10)	$0.089 \left(^{+96}_{-100} ight)$
a_0^g	$0.012 \left({}^{+11}_{-8} \right)$	$0.0289 \begin{pmatrix} +57 \\ -37 \end{pmatrix}$
a_1^g	$0.7 \begin{pmatrix} +3 \\ -4 \end{pmatrix}$	$0.08 \left({^{+8}_{-22}} \right)$
a_2^g	$0.8(^{+2}_{-17})$	$-1.0\left(^{+20}_{-0} ight)$

CLN Fit:	Data + lattice	Data + lattice + LCSR
$\chi^2/{ m dof}$	34.3/36	34.8/39
$ V_{cb} $ (0.0382 (15)	0.0382 (14)
$\rho_{D^*}^2$	$1.17 \left({}^{+15}_{-16} \right)$	1.16 (14)
$R_{1}(1)$	$1.391 \left({}^{+92}_{-88} \right)$	1.372(36)
$R_{2}(1)$	$0.913\left(^{+73}_{-80} ight)$	$0.916\left(^{+65}_{-70} ight)$
$h_{A_1}(1)$	0.906 (13)	0.906 (13)

• B.Grinstein, A.Kobach, Phys.Lett. B771 (2017) 359

$$|V_{cb}| = (37.4 \pm 1.3) \times 10^{-3}$$
 (CLN)
 $|V_{cb}| = (41.9 \ ^{+2.0}_{-1.9}) \times 10^{-3}$ (BGL)

Belle $B^0 \rightarrow D^{*-} I^+ v$ untagged [arXiv:1809.03290] subm.to PRD

- Measure IV_{cb}I using **Belle** 711fb⁻¹.
- Signal Selection using
 - 3D Binned Maximum Likelihood fit of
 - (cosθ_{B,D*l})
 - $\Delta M = mass (D^*-D^0)$
 - Iepton momentum

 Float Signal & Backgrounds components from MC to extract background yields

CLN: FF parameters and $|V_{ch}|$

Simultaneous fit of 1D projections of w, $\cos\theta_1$, $\cos\theta_2$, X to extract ρ^2 , $R_1(1)$, $R_2(1)$ and $F(1)IV_{cb}I$

BGL: FF parameters and |V_{cb}|

Simultaneous fit of 1D projections of w, $\cos\theta_{l}$, $\cos\theta_{v}$, X to extract the coefficients of the BGL expansion (up to 3rd order) and F(1)IV_{cb}I

Summary $B \rightarrow D^* I_V$

CLN

	V _{cb} x 10 ³	
Belle tagged 2018	37.4 +/- 1.2	arXiv:1702.01521
Belle untagged 2018	38.4 +/- 0.6	arXiv:1809.03290, subm. to PRD
HFLAV 2016	39.1 +/- 0.7	Eur.Phys.J. C77 (2017) 895

BGL

	V _{cb} x 10 ³	
Belle tagged 2018	41.7 +/- 2.0	arXiv:1702.01521, PLB769 (2017) 441
Belle untagged 2018	38.3 +/- 0.8	arXiv:1809.03290, subm. to PRD
BaBar tagged 2019	38.4 +/- 0.9	arXiv:1903.10002, subm. to PRL

Recent data does not support the FF parameterization dependence of |Vcb| excl!!

[R. Glattauer, CS, Phys. Rev. D93, 032006 (2016)]

- 711/fb of Belle Y(4S) data
- Full reconstruction of one B (hadronic tag)
- 10 D⁺ and 13 D⁰ modes are used on the signal side, covering 28.9% and 40.1% of the width
- Signal extraction from M²_{miss} in 10 bins of w
- 16,992 +/- 192 signal events
 (5150 +/- 95 neutral, 11,843 +/- 167 charged B events)

$B \rightarrow Dlv$ at Belle

Belle 2016: CLN vs. BGL fit with lattice data

 $|V_{cb}| = (39.9 + - 1.3) \times 10^{-3}$

 $|V_{cb}| = (40.8 + / - 1.1) \times 10^{-3}$

|V_{cb}| from inclusive decays

$$\mathbf{B} \to \mathbf{X} \mathbf{I} \mathbf{v} \qquad \Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}(\frac{1}{m_b^4})\right)$$

- Based on the Operator Product Expansion (OPE)
- <O_i>: hadronic matrix elements (non-perturbative)
 c_i: coefficients (perturbative)
- Parton-hadron duality → the hadronic ME depend only on the initial state

	Kinetic [JHEP 1109 (2011) 055]	1S [PRD70, 094017 (2004)]		
O(1)	m _b , m _c	m _b		
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	λ_1, λ_2		
O(1/m ³ _b)	$\rho^{3}_{D}, \rho^{3}_{LS}$	ρ ₁ , τ ₁₋₃		

Moments of the E_l and M²_X spectrum

Also other observables in B \rightarrow XIv can be expanded into an OPE with the same heavy quark parameters, e.g.,

The nth moment of the (truncated) lepton energy spectrum

$$R_n(E_{\rm cut},\mu) = \int_{E_{\rm cut}} \left(E_\ell - \mu\right)^n \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \,\mathrm{d}E_\ell \,, \quad \langle E_\ell^n \rangle_{E_{\rm cut}} = \frac{R_n(E_{\rm cut},0)}{R_0(E_{\rm cut},0)}$$

The nth moment of the (truncated) M²_X spectrum

$$\langle m_X^{2n}\rangle_{E_{\rm cut}} = \frac{\displaystyle \int_{E_{\rm cut}} (m_X^2)^n \, \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}{\displaystyle \int_{E_{\rm cut}} \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}$$

Master plan:

- Measure the quark masses and heavy quark parameters using moments
- Substitute them in the formula of the semileptonic width
- Determine $|V_{cb}|$ from the semileptonic branching fraction

Two sets of theoretical calculations

- "Kinetic running mass"
 - P. Gambino, N. Uraltsev, Eur. Phys. J. C34, 181 (2004)
 - P. Gambino, JHEP 1109 (2011) 055
 - A. Alberti, P. Gambino, K.J. Healey, S. Nandi, Phys. Rev. Lett. 114, 061802 (2015)
- "1S mass"

 C. Bauer, Z. Ligeti, M. Luke, A. Manohar, M. Trott, Phys. Rev. D70, 094017 (2004)

Non-perturbative parameters in the 1/m_b expansion

	Kinetic	1S
O(1)	m _b , m _c	m _b
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	λ ₁ , λ ₂
O(1/m ³ _b)	$ρ^{3}_{D}$, $ρ^{3}_{LS}$	ρ ₁ , τ ₁₋₃

Data used in $b \rightarrow c$ inclusive analyses

BaBar	<e<sup>n_I>: n=0,1,2,3 [PRD 69, 111104 (2004), PRD 81, 032003 (2010)] <m<sup>2n_X>: n=1,2, 3 [PRD 81, 032003 (2010)]</m<sup></e<sup>
Belle	<e<sup>nl>: n=0,1,2,3 [PRD 75, 032001 (2007)] <m<sup>2nX>: n=1,2 [PRD 75, 032005 (2007)]</m<sup></e<sup>
CDF	<m<sup>2n_X>: n=1,2 [PRD 71, 051103 (2005)]</m<sup>
CLEO	<m<sup>2n_X>: n=1,2 [PRD 70, 032002 (2004)] <e<sup>n_γ>: n=1 [PRL 87, 251807 (2001)]</e<sup></m<sup>
DELPHI	<e<sup>nl>: n=1,2,3 <m<sup>2n_X>: n=1,2 [EPJ C45, 35 (2006)]</m<sup></e<sup>

- 23 measurements from BaBar, 15 measurements from Belle, 12 from other experiments
- Newest measurement is from the year 2010!

HFLAV

Summer 2016

	$ V_{cb} $ [10 ⁻³]	$m_b^{ m kin}~[{ m GeV}]$	$m_c^{\overline{ m MS}}~[{ m GeV}]$	$\mu_\pi^2 ~[{ m GeV^2}]$	$ ho_D^3~[{ m GeV^3}]$	$\mu_G^2 \; [\text{GeV}^2]$	$ ho_{LS}^3$ [GeV ³]
value	42.19	4.554	0.987	0.464	0.169	0.333	-0.153
error	0.78	0.018	0.015	0.076	0.043	0.053	0.096
$ V_{cb} $	1.000	-0.257	-0.078	0.354	0.289	-0.080	-0.051
$m_b^{ m kin}$		1.000	0.769	-0.054	0.097	0.360	-0.087
$m_c^{\overline{ m MS}}$			1.000	-0.021	0.027	0.059	-0.013
μ_{π}^2				1.000	0.732	0.012	0.020
$ ho_D^3$					1.000	-0.173	-0.123
μ_G^2						1.000	0.066
$ ho_{LS}^3$							1.000

 $\mathcal{B}(\overline{B} \to X_c \ell^- \overline{\nu}_\ell) = (10.65 \pm 0.16)\%$ χ^2 of 15.6 for 43 degrees of freedom.

- c quark mass constraints $m_c^{\overline{\text{MS}}}(3 \text{ GeV}) = 0.986 \pm 0.013 \text{ GeV}$
- Average B lifetime: (1.579 +/- 0.004) ps

Belle

Outlook to Belle II – improved tagging

- > 5000 B decays modes reconstructed
- O(200) particle decay channels for training
- Output is candidate-wise signal probability

Tagging ε on MC						
Tag	FR^1	FEI Belle	FEI Belle II			
Hadronic B ⁺	0.28%	0.76%	0.66%			
SL <i>B</i> ⁺	0.67%	1.80%	1.45%			
Hadronic B ⁰	0.18%	0.46%	0.38%			
SL <i>B</i> ⁰	0.63%	2.04%	1.94%			

¹Belle Full Reconstruction algorithm.

Talk by Lu Cao yesterday

1807.08680

Outlook to Belle II (2)

 Experimental correlations between input measurements (only partially accounted for in the current analysis)

Summary and outlook

- After the excitement in 2017/2018, recent data for B \rightarrow D*Iv seem to indicate that there is no significant form FF parameterization dependence in the determination of $|V_{cb}|$ exclusive
 - |V_{cb}| exclusive fit values reported by Belle [arXiv:1809.03290] and BaBar [arXiv:1903.10002] are consistent with the previous HFLAV 2016 average
 - The 2-3 σ -ish discrepancy with $|V_{cb}|$ inclusive remains
- Experimental D(*)Iv data does not constrain the FF slope around zero recoil well [arXiv:1905.08209]
 → lattice input for D*Iv at non-zero recoil needed
- New experimental input to the |V_{cb}| inclusive analysis might also provide insights

Cabibbo-Kobayashi-Maskawa quark mixing

 $\mathbf{V}\mathbf{V}^{\intercal}$

$$\left(egin{array}{c} d' \ s' \ b' \end{array}
ight) \, = \, {f V} \, \left(egin{array}{c} d \ s \ b \ b \end{array}
ight)$$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$\mathbf{V}\mathbf{V}^{\dagger} = \mathbf{V}^{\dagger}\mathbf{V} = 1$$

The CKM element magnitudes determine the possible quark flavour transitions in charged current processes

 $-\mathcal{L}_{W^{\pm}} = rac{g}{\sqrt{2}} \ \overline{u_{Li}} \ \gamma^{\mu} \ (V_{\mathrm{CKM}})_{ij} \ d_{Lj} \ W^{+}_{\mu} + \mathrm{h.c.}$

CP violation

$$V_{\rm CKM} = \begin{matrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{matrix}$$

- However, $V_{\rm CKM}$ also contains a complex phase, responsible for all CP-violating phenomena in the SM
- CPV established (>5 σ) in 17 observables (in K and B physics) \rightarrow extremely constrained system
- New physics would typically disturb the SM pattern of CPV

The CKM unitarity triangle

Linac

1999 – 2010: B factory at KEK (Japan)

KEKB double ring e⁺e⁻ collider

$e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$

Belle detector

The Belle detector

Belle and BaBar luminosity

$B^0 \rightarrow D^{*-}I^+v$ at Belle [W. Dungel, CS, Phys. Rev. D 82, 112007 (2010)]

- 711/fb of Belle Y(4S) data
- About 120,000 reconstructed $B^0 \rightarrow D^{*-}I^+\nu$ decays
- Fit in 40 bins of w, cos $\theta_{\rm I}$, $\theta_{\rm V}$ and χ to obtain CLN F.F. parameters
- Dominant experimental systematics: tracking

$$\begin{array}{rcl} \mathcal{F}(1)|V_{cb}| &=& (34.6\pm0.2\pm1.0)\times10^{-3}\\ &\rho^2 &=& 1.214\pm0.034\pm0.009\\ R_1(1) &=& 1.401\pm0.034\pm0.018\\ R_2(1) &=& 0.864\pm0.024\pm0.008\\ &\chi^2/ndf &=& 138.8/155 \end{array}$$

31

BaBar hadronic moments

- Fully reconstruct the hadronic decay of one B in Y(4S) → BB (efficiency ~0.4%, purity ~80%)
- Х $\mathsf{B}_{\mathsf{sig}}$ Y(4S
 - Require one identified lepton amongst the signal-side particles (p > 0.8 GeV/c)
 - Combine all remaining particles to the X system and do a kinematic fit
 - 4-momentum conservation
 - Missing mass consistent with zero mass neutrino

232M BB

PRD 81, 032003 (2010)

Moment measurement

Hadronic mass spectrum after kinematic fit

- moments in bins of X multiplicity, E_{miss}-cp_{miss} and lepton 10 15 $< m_{X,true}^2 > [(GeV/c^2)^2]$ momentum
- Moments of the hadronic mass spectrum up to M_{x}^{6} for E_{cut} between 0.8 and 1.9 GeV are measured
- Also mixed mass-energy moments are determined and the electron energy moments from [PRD69, 111104] are reevaluated

232M BB

PRD 81, 032003 (2010)

Belle E_I and M²_X moments PRD 75, 032001 (2007) PRD 75, 032005 (2007)

- For both the E_I and M²_X measurements, similar 152M BB experimental method using fully reconstructed events
- The finite detector resolution is unfolded with SVD algorithm [NIM A372, 469 (1996)]
- <Eⁿ_e> measured for n=0,...,4 and E_{cut}=0.4-2.0 GeV
- $< M^{2n}_{\chi} >$ measured for n=1,2 and $E_{cut} = 0.7 1.9$ GeV

1S scheme analysis

HFLAV

Summer 2016

	m_b^{1S} [GeV]	$\lambda_1 \; [\text{GeV}^2]$	$ ho_1~[ext{GeV}^3]$	$ au_1 \; [ext{GeV}^3]$	$ au_2 \; [\text{GeV}^3]$	$\tau_3 \; [\text{GeV}^3]$	$ V_{cb} $ [10 ⁻³]
value	4.691	-0.362	0.043	0.161	-0.017	0.213	41.98
error	0.037	0.067	0.048	0.122	0.062	0.102	0.45
m_b^{1S}	1.000	0.434	0.213	-0.058	-0.629	-0.019	-0.215
λ_1		1.000	-0.467	-0.602	-0.239	-0.547	-0.403
$ ho_1$			1.000	0.129	-0.624	0.494	0.286
τ_1				1.000	0.062	-0.148	0.194
$ au_2$					1.000	-0.009	-0.145
$ au_3$						1.000	0.376
$ V_{cb} $							1.000

 χ^2 of 23.0 for 59 degrees of freedom

- B quark mass constrained with $B \rightarrow X_s \gamma$ data
- Average B lifetime: (1.579 +/- 0.004) ps