

Phillip Urquijo The University of Melbourne Towards the Ultimate Precision in Flavour Physics Durham, April 2019

MELBOURNE

Belle II status and plans

Belle II Flavour Program

- Belle II plans to collect 50 ab⁻¹ of collisions near Y(4S)
 - a (Super) B-factory (~1.1 x 10⁹ BB pairs per ab⁻¹) a (Super) charm factory (~1.3 x 10⁹ cc pairs per ab⁻¹) a (Super) τ factory (~0.9 x 10⁹ ττ pairs per ab⁻¹)
- Flavour program at Belle II
 - CKM precision metrology.
 - Flavour BSM analyses with good "detection universality" (e.g. leptons).
 - Dark, missing energy: hidden portals, axiflavons etc.
- Important, unexplained hierarchy among 10 of 19 params of SM $m_{\nu}=0$
 - Mass (6 params, small ratios of scales)
 - CP violation (4 params, strong hierarchy between generations)
- With phenomenological consequences for quark flavour dynamics

Belle II

CKM and CPV SM Metrology: Belle II core program

 $V_{\text{CKM}} \propto \begin{pmatrix} |V_{ud}| & |V_{us}| \\ -|V_{cd}| & |V_{cs}| \\ |V_{td}| e^{-i\beta} & -|V_{ts}| e^{-i\beta_s} \end{pmatrix}$ ${\cal D}$

$B \rightarrow \pi \pi, \rho \rho$	α/Φ2	$B \rightarrow D^* l \nu / b \rightarrow c l \nu$	Vcb
$B \rightarrow D^{(*)} K^{(*)}$	γ/Φ ₃	$B \rightarrow \pi l \nu / b \rightarrow u l \nu$	Vub
$B \rightarrow J/\Psi K_s$	β/Φ1	$M \rightarrow l \vee (\gamma)$	

Precision improvements require improved uncertain tensions, e.g. |V_{ub}| inc.-excl.

|V_{cs}|

 $|V_{ub}| e^{-\prime}$ $|V_{cb}|$ ١V_{tb}١

via Form factor / OPE via Form factor / OPE via Decay constant f_M

WA HFLAV & CKMfitter 2018

 $sin2\Phi_1 = 0.70 \pm 0.02$ $\Phi_2 = (84.9 + 5.1 - 4.5)^{\circ}$ $\Phi_3 = (73.5^{+4.2}_{-5.1})^{\circ}$

CKM and CPV SM Metrology: Belle II core program

$B \rightarrow \pi \pi, \rho \rho$	α/Φ2	$B \rightarrow D^* l \nu / b \rightarrow c l \nu$	Vcb
$B \rightarrow D^{(*)} K^{(*)}$	γ/Φ ₃	$B \rightarrow \pi l \nu / b \rightarrow u l \nu$	Vub
$B \rightarrow J/\Psi K_s$	β/Φ1	$M \rightarrow l \vee (\gamma)$	VUD
$B_s \rightarrow J/\psi \Phi$	βs	$\Delta m_d, \Delta m_s$	Vtb

Phillip URQUIJO

THE UNIVERSITY OF MELBOURNE

Belle I @ Super-KEKB Intensity frontier flavour-factory experiment, Successor to Belle @KEKB (1999-2010)

Belle II

detector

1km

~900 researchers (306 grad students) 7 GeV e⁻, 4 GeV e⁺ E_{CM} Y(4S) = 10.58 GeV + scans Y(4S) → B anti-B

B + Charm + τ factory

Expected (Integrated) Luminosity

SuperKEKB - March 25 2019 "Phase 3" Begins

- New e⁺ damping ring (commissioned 2018). 1)
- New 3 km e⁺ ring vacuum chamber 2) (commissioned in 2016). Optics and vacuum scrubbing in 2018.
- 3) New superconducting final focus (commissioned 2018).

Phillip URQUIJO

Large crossing angle nano-beams

KEKB

Ordinary collision (KEKB)

$\sigma = 4.5 \text{ mm}$

Belle II

Belle II Detector, 2019 commissioning of new VXD

Belle II

VXD measured and expected performance

- PXD: L1+1/6 of L2 (rest will be added in 2020)
- VXD (tracking) already working in phase 3.

ee→ττ(γ)

100 θ_{lab}^{max2} (Degrees)

Used for early trigger & track efficiency measurements

2019 & Early Phase 3

- First 2019 target is (up to) order(10) fb⁻¹ measurements, \rightarrow 100 fb⁻¹ by Dec
 - Publication prospects for dark sector searches.
 - Performance studies (particularly VXD) with heavy flavour channels; Rediscovery of TDCPV, lifetime measurement precision.
- Most new heavy flavour publications likely to start with 2020 data set

2021-2022 B2TiP Milestone arXiv: 1808.10567 / PTEP (99 citations)

2021: > 1 ab^{-1} (Belle) 2020: > 500 fb⁻¹ (Babar) 2019: 10-50 fb⁻¹ (July) 100 fb⁻¹ (Dec)

Phillip URQUIJO

Example Milestones (B-physics oriented)

Mc	Modes highlighted as golden in the B2TiP (Belle II					SL	Br(B→τν)	21%	9
Ph	ysics) l	book (non exhaustiv	e).			SL	Br(B→μν)	2σ	>
Exp	Expect ongoing publication output from >500 fb-1					SL	Br(B \rightarrow Xu l v) inclusive d Γ /dMx for V _{ub}	9%	4
on	heavy	flavour - precision n	nilestone p	oints are		EWP	R(K) e.g. 1 <q<sup>2<6 GeV/c²</q<sup>	28%	11
sho	own.					EWP	R(K*) e.g. 1 <q2<6 c2<="" gev="" td=""><td>26%</td><td>10</td></q2<6>	26%	10
[ab-1]	Group	Channel	Current	Precision		EWP	P(5') in B \rightarrow K*l+l- e.g. 4 <q<sup>2<6 GeV/c²</q<sup>	0.34	0.
	5 LOWM $ee \rightarrow A' \gamma, A' \rightarrow invisible$ LOWM $ee \rightarrow a' \gamma, a' \rightarrow \gamma \gamma$	precision (Belle)			TDCPV	S _{CP} (B→η' KS)	0.08	0.	
	(Delle)			TDCPV	$S_{CP}(B \rightarrow K^* \gamma)$	0.32	0.		
0.05	LOWM	$ee \rightarrow A' \gamma, A' \rightarrow invisible$	_	Unique		HAD	ФЗ (В→DK)	15 deg	5 0
	LOWM	$ee \rightarrow a' \gamma, a' \rightarrow \gamma \gamma$	_	Unique	15	EWP	Br(B \rightarrow X _s l ⁺ l ⁻), e.g. 3.5 <q<sup>2<6 GeV/c²</q<sup>	24%	8
	LOWM	ee \rightarrow Z' $\mu\mu$, Z' \rightarrow invisible	_	Unique		TDCPV	$S_{CP}(B \rightarrow \rho \gamma)$	60	1
	LOWM	ee→ MM	_	Unique		TDCPV	$S_{CP}(B \rightarrow J/\psi \pi^0)$	0.22	0.
2	SL	R(B→D [*] τν)	0.02	0.012		HAD	$A_{CP}(B \rightarrow K_S \pi^0)$	0.15	0.
	SL	R(B→Dτν)	0.07 (0.04)	0.035 (0.024)	<mark>20+</mark>	EWP	Br(B→K ν ν)	~100%	11
	SL	V _{ub} (Β→π l ν)	5%	2.5%		EWP	Br(B→K [*] v v)	~100%	10
		+LQCD improvements				EWP	$Br(B_s \rightarrow \gamma \gamma)$	< 8.7 10-6	0.3
	TDCPV	$S_{CP}(B \rightarrow J/\psi K_S)$	0.023	0.012		TDCPV	$S_{CP}(B \rightarrow \pi^0 \pi^0)$	-	0.

Dark Sector, rates & trigger

- $\epsilon F_{Y}^{\mu\nu}F'_{\mu\nu}$ (dark photon A'), $\sum \theta g' \overline{l} \gamma^{\mu}Z'_{\mu}l$ (dark Z') **Vector portal**
- **Axion portal** $\frac{G_{agg}}{\Delta} a G_{\mu\nu} \widetilde{G}^{\mu\nu} + \frac{G_{a\gamma\gamma}}{\Delta} a F_{\mu\nu} \widetilde{F}^{\mu\nu} (axion, alps)$
- Scalar portal $\lambda H^2 S^2 + \mu H^2 S$ (dark Higgs)
- Trigger: O(10 nb) acceptance / suppress QED events, B & D > 99% efficiency

Physics proce	ss Cross section [nb]	Cuts	
$\Upsilon(4S)$	1.05 ± 0.10	-	
$u \bar{u}(\gamma)$	1.61	-	
$dar{d}(\gamma)$	0.40	-	
$sar{s}(\gamma)$	0.38	-	
$c\bar{c}(\gamma)$	1.30	-	6.0 Signal
$e^+e^-(\gamma)$	$300 \pm 3 \text{ (MC stat.)}$	$10^\circ < \theta^*_{e's} < 170^\circ,$	ра С 5.5
		$E^*_{e's} > 0.15 \text{ GeV}$	
$e^+e^-(\gamma)$	74.4	$e^{\prime}\mathrm{s}~(p>0.5\mathrm{GeV})$ in ECL	2 ₀ 5.0
$\gamma\gamma(\gamma)$	$4.99\pm0.05~({\rm MC \ stat.})$	$10^{\circ} < \theta^*_{\gamma's} < 170^{\circ},$	
		$E^*_{\gamma's} > 0.15 \text{ GeV}$	Т.5
$\gamma\gamma(\gamma)$	3.30	$\gamma {\rm 's}~(p>\!\!0.5 {\rm GeV})$ in ECL	4.0
$\mu^+\mu^-(\gamma)$	1.148	-	3 5
$\mu^+\mu^-(\gamma)$	0.831	$\mu {\rm `s}~(p>\!0.5{\rm GeV})$ in CDC	
$\mu^+\mu^-\gamma(\gamma)$	0.242	μ 's ($p > 0.5 \text{GeV}$) in CDC,	3.0
		$\geq 1 \gamma \ (E_{\gamma} > 0.5 \text{GeV})$ in ECL	2 5
$\tau^+\tau^-(\gamma)$	0.919	-	213
$ uar u(\gamma)$	0.25×10^{-3}	-	2.0
$e^+e^-e^+e^-$	39.7 ± 0.1 (MC stat.)	$W_{\ell\ell} > 0.5 { m GeV}$	20
$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5 { m GeV}$	

Belle II

Single photon signature from dark photon.

13

Dark Sector, expected sensitivity

Time dependent CP Violation / Overview

Improving on $sin2\Phi_1$ will be a challenge:

for **experiments**: soon the measurement will be systematics limited: need to control them;

for **theory**: so far neglected the contributions from suppressed amplitudes carrying a different phase.

TD CP violation measurements of $b \rightarrow qqs$ transitions (q = u, d, s) are a major target

arXiv: 1808.10567

	WA (2017)		5 a	50 a		
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	
$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052	
ϕK^0	0.12	0.14	0.048	0.035	0.020	
$\eta' K^0$	0.06	0.04	0.032	0.020	0.015	
ωK^0_S	0.21	0.14	0.08	0.06	0.024	
$K^0_S \pi^0 \gamma$	0.20	0.12	0.10	0.07	0.031	
$K^0_S \pi^0$	0.17	0.10	0.09	0.06	0.028	

- Δt resolution ~0.77 ps (30% to a factor 2 better compared to Belle);

 - +30% K_s accept.
- (F-BDT, <u>MC estimate</u>, was **30%** at Belle)

Hadronic D and B reconstruction in phase 2

Entries/ (0.0133 GeV/c²

- Illustrates capabilities of Belle II and potential for c and b physics.
- CP Eigenstate $D^0 \rightarrow K_S \pi^0$ difficult at LHCb!

- Recreating CLEO & ARGUS
 - > 200 B candidates in hadronic modes (470/pb)

Phillip URQUIJO

Hadronic D and B reconstruction in phase 2

- Illustrates capabilities of Belle II and potential for c and b physics.
- CP Eigenstate $D^0 \rightarrow K_S \pi^0$ difficult at LHCb!

- MeV (24 • Recreating CLEO Entries/ & ARGUS
 - > 200 B candidates in hadronic modes (470/pb)

- dominated by systematic uncertainties.
- All others are stat limited through to 50 ab⁻¹
- Φ₃ covered by K. Trabelsi

Belle II

Phillip URQUIJO

Semileptonic and leptonic B decays / Techniques

-0.15 agginge for favour, charge, kinematics.

$$\frac{1}{2} \left(p_{\nu}^{D^{*}} - p_{\ell} \right)^{2} = \left(p_{\nu} \right)^{2} = m_{\text{miss}}^{2} \smile$$

energy E_{ECL/extra}

Belle II

lle II Data

Belle PRD 94, 072007 (2016)

Belle PRL 118, 211801 (2017) Belle arXiv:1709.00129

Measurement of the D*⁻**polarization in the decay** B→D* τ v, arXiV: 1903.03102

Belle II

Phillip URQUIJO

21

THE UNIVERSITY OF MELBOURNE

CKM Global Fit Projection: Belle II

E. Kou, PU et al. arXiv: 1808.10567

V_{ub} ~ 1.2% Belle II

Radiative and EW penguin B decays / Overview

- Several tensions at the 2-3 σ level: Statistics limited at Belle II.
- Belle II dominant measurements
 - TD CPV in radiative $B_d \rightarrow \rho \gamma$, K* γ
 - Inclusive spectra in $B \rightarrow X l^+ l^-$ (initially sum over exclusives) with M_{X_s} < 1.8 GeV, eventually: explore fully inclusive recoil).
 - Electron (low X/X_0) & τ channels
 - SM level (5σ) in B \rightarrow Xvv

material, averaged over ϕ

Radiative and EW penguin B decays / Belle R_K*

Belle II

Radiative and EW penguin B decays / Performance

b \rightarrow **d y transitions** are a key opportunity, requiring better K/ π Particle ID performance than Belle.

Kinematically identified kaon from D^{*+} in TOP; x vs t pattern (mapping of Cherenkov ring)

Phillip URQUIJO

Radiative and EW penguin B decays / Targets

- Except for $B \rightarrow X_{s+d} \gamma$, all channels are highly statistics limited.
 - Expect systematics to be subdominant beyond 50 ab⁻¹
 - Key to understand beam **background induced efficiency loss and E**ECL **degradation** in $B \rightarrow Kvv$ and to be unprejudiced to NP, i.e. ALPs/axiflavons

Observables	Belle	Bel	lle II
	(2017)	5 ab^{-1}	50 ab^{-1}
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu})$	$< 40 \times 10^{-6}$	25%	9%
$\mathcal{B}(B \to K^+ \nu \overline{\nu})$	$< 19 \times 10^{-6}$	30%	11%
$A_{CP}(B \to X_{s+d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1.5	0.5
$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 3.5 \ \text{GeV}^2/c^4)$	26%	10%	3%
$Br(B \to K^+ \mu^+ \mu^-)/Br(B \to K^+ e^+ e^-)$	28%	11%	4%
$(1 < q^2 < 6 \text{ GeV}^2/c^4)$			
$Br(B \to K^{*+}(892)\mu^+\mu^-)/Br(B \to$	24%	9%	3%
$K^{*+}(892)e^+e^-) \ (1 < q^2 < 6 \ \mathrm{GeV}^2/c^4)$			
$\mathcal{B}(B_s \to \gamma \gamma)$	$< 8.7 \times 10^{-6}$	23%	
$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$		< 0.8	

Belle II

Phillip URQUIJO

$$\mathcal{H}_{\text{eff}} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + h.$$

Belle II Physics Ultimate Precision, 50 ab⁻¹

- The full physics data taking program has just commenced!
- Beam background remediation the current (April 2019) focus.

Observables	Expected the. accu-	Expected	Facility (2025)			1808.10	567 (Accept	ted to
	racy	exp. uncertainty						
UT angles & sides								
ϕ_1 [°]	***	0.4	Belle II	Radiative & EW Penguins	210.210			
ϕ_2 [°]	**	1.0	Belle II	$\mathcal{B}(B \to X_s \gamma)$	**		4%	Bel
ϕ_3 [°]	*** CKM	1.0	LHCb/Belle II	$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	***		0.005	Bel
$ V_{cb} $ incl.	***	1%	Belle II	$S(B \to K_S^0 \pi^0 \gamma)$	***		0.03	Bel
$ V_{cb} $ excl.	***	1.5%	Belle II	$S(B o ho \gamma)$	**	EWP	0.07	Bel
$ V_{ub} $ incl.	**	3%	Belle II	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**		0.3	Bel
$ V_{ub} $ excl.	**	2%	Belle II/LHCb	$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***		15%	Bell
CPV			,	$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***		20%	Bel
$S(B \to \phi K^0)$	***	0.02	Belle II	$R(B \to K^* \ell \ell)$	***		0.03	Bell
$S(B \to \eta' K^0)$	*** CPV	0.01	Belle II	Charm				
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II	$\mathcal{B}(D_s \to \mu \nu)$	***		0.9%	Bell
$\mathcal{A}(B \to K^+ \pi^-) \ [10^{-2}]$	***	0.20	LHCb/Belle II	$\mathcal{B}(D_s \to \tau \nu)$	***	D	2%	Bell
(Semi-)leptonic			,	$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	**		0.03	Bel
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II	$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***		0.03	Bell
$\mathcal{B}(B \to \mu \nu)$ [10 ⁻⁶]	**	7%	Belle II	$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$	***		4	Bell
$R(B \to D\tau\nu)$	*** > L	3%	Belle II	Tau				
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb	$\tau \to \mu \gamma \ [10^{-10}]$	***	_	< 50	Bel
	Charm	covered by	M Ctaria	$\tau \to e\gamma \ [10^{-10}]$	***	L	< 100	Bel
		<u>i covereu by</u>	MJLdIIC	$\tau \to \mu \mu \mu \ [10^{-10}]$	***		< 3	Bel

Belle II

E. Kou, PU et al. Belle II **Physics book, arXiv:**

Phillip URQUIJO

Upgrade 50 $ab^{-1} \rightarrow 250 ab^{-1}$ (Belle II?)

- provided large enough samples are available.
- Machine (SuperKEKB) upgrades are possible.
 - No concrete plan yet, just initial discussions.
 - <u>Consider factor 5 increase in luminosity (peak and integrated).</u>
 - Also considering possibility of polarisation.
- Exploring upgrade possibilities for Belle II.
 - Commencing studies to understand detector limits and mitigation measures
- Open upgrade effort (not just Belle II members).
 - Also open to new ideas from theory for new flavour measurements.

• Flavour physics has the potential to continue exploring new physics territory

Backup

- We are on the Y(4S) resonance and recording B anti-B pairs with ~99% efficiency.
- Not so obvious: When we change accelerator optics, we remain on Y(4S).

Belle II

Event Topology (fits to R_2) tells us we are seeing B's

0.1

0.2

0.3

0.4 0.5 0.6

0.7

0.8

$$\mathsf{R}_2 = \mathsf{H}_2/\mathsf{H}_0 \qquad H_l = \sum_{i,j} \frac{|\mathbf{p}_i| |\mathbf{p}_j|}{E_{\mathrm{vis}}^2} P_l(\cos\theta)$$

Phillip URQUIJO

Leptonic and Semileptonic Decay

- 3-ways to measure |V_{CKM}| with leptonic and semileptonic decays
- **Leptonic**: decay constant from LQCD

$$\Gamma(B \to \ell_1 \ell_2) = \frac{M_B}{4\pi} |G|^2 f_B^2 \zeta_{12} \frac{\lambda_{12}^{1/2}}{M_B^2} \qquad G = \frac{G}{\sqrt{2}}$$

Exclusive semileptonic: form factor parameterisation with normalisation from LQCD or Light Cone Sum Rules

$$\frac{d\Gamma}{dq^2} = C_q |\eta_{\rm EW}|^2 \frac{G_F^2 |V_{qb}|^2}{(2\pi)^3} \frac{\lambda^{1/2}}{4M_B^3} \frac{\lambda_{12}^{1/2}}{q^2} \left\{ q^2 \beta_{12} \left[|H_+|^2 + |H_-|^2 + |H_0|^2 \right] + \zeta_{12} |H_s|^2 \right\}$$

Inclusive semileptonic: Heavy quark symmetry if you measure the full rate, described by heavy quark expansion $\Gamma(B \to X_c \ell \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 [[1 + A_{ew}] A_{nonpert} A_{pert}]$

Belle II

$$\frac{F}{2}V_{ub},$$

$$(m_{\nu_\ell} \to 0)$$

$$\lambda_{12} = (M_B^2 - m_1^2 - m_2^2)^2 - 4$$

$$\zeta_{12} = m_1^2 + m_2^2 - \frac{(m_1^2 - m_2^2)^2}{M_B^2}$$

$$\beta_{12} = 1 - \frac{m_1^2 + m_2^2}{q^2} - \frac{\lambda_{12}}{q^2}$$

Golden modes for Belle II

				COVERY	[2][2][2]
Process	Observable	Theory	SYS. limit	VS LHCb	vs Belle
$B \to \pi \ell \nu_l$	$ V_{ub} $	***	10-20	***	***
$B \to X_u \ell \nu_\ell$	$ V_{ub} $	**	2-10	***	**
$B \to \tau \nu$	Br.	***	>50(2)	***	***
$B \to \mu \nu$	Br.	***	>50(5)	***	***
$B \to D^{(*)} \ell \nu_{\ell}$	$ V_{cb} $	***	1-10	***	**
$B \to X_c \ell \nu_\ell$	$ V_{cb} $	***	1-5	***	**
$B \to D^{(*)} \tau \nu_{\tau}$	$R(D^{(*)})$	***	5-10	**	***
$B \to D^{(*)} \tau \nu_{\tau}$	P_{τ}	***	15 - 20	***	***
$B \to D^{**} \ell \nu_{\ell}$	Br.	*	-	**	***

τ Lepton Flavour Violation

<u>Belle II will push many limits below 10-9</u>

Belle II

τ Candidates at Belle II

Phillip URQUIJO

New physics DNA

- What new physics could it be?
- Matter antimatter asymmetry \rightarrow New sources of CP Violation
- <u>Quark and Lepton flavour & mass</u> hierarchy →extended gauge sector coupling to third generation (H±, W', Z') →restored L-R symmetry
- **Finite neutrino masses** \rightarrow LFV and LFUV.
- 19 free parameters \rightarrow <u>GUTs</u>, **leptoquarks**

Observables	Experimental Sensitivity	Multi-Higgs Models (§17.2)	generic SUSY	MFV (§17.3)	Z' models ($\S17.6.1$)	gauged flavour (§17.6.2)	$3-3-1$ ($\S17.6.3$)	left-right $(\$17.6.4)$	leptoquarks (§18.2.1)	compositeness (\$17.7)
au tree decays:										
$\mathcal{B}(\tau \to K\nu)/\mathcal{B}(\tau \to \pi\nu)$	***	**	×	×	×	×	×	*	***	
$\mathcal{B}(\tau \to K^* \nu) / \mathcal{B}(\tau \to \rho \nu)$	***	×	×	×	×	×	×	*	***	
$\tau \rightarrow \mu$ decays:										
$ au o \mu \gamma$	***	*	***	*	*	*	*	×	*	***
$ au o \mu \pi^0$	***	*	**	×	***	×	***	×	***	
$ au o \mu K_S$	***	*	*	×	*	×	*	×	***	
$ au o \mu ho^0$	***	×	**	×	***	×	***	×	***	
$\tau ightarrow \mu K^{0*}$	***	×	*	×	*	×	*	×	***	
$\tau^- \to \mu^- \ell^- \ell^+$	**	**	*	×	***	***	***	×	*	***
$\tau^- ightarrow \mu^- \mu^- e^+$	**	*	×	×	*	***	*	×	×	***

• τ LFV is an excellent example.

