Belle II input for y

+

[considerations on global y combinations]

K.Trabelsi (LAL) karim.trabelsi@lal.in2p3.fr [2019/04/03]

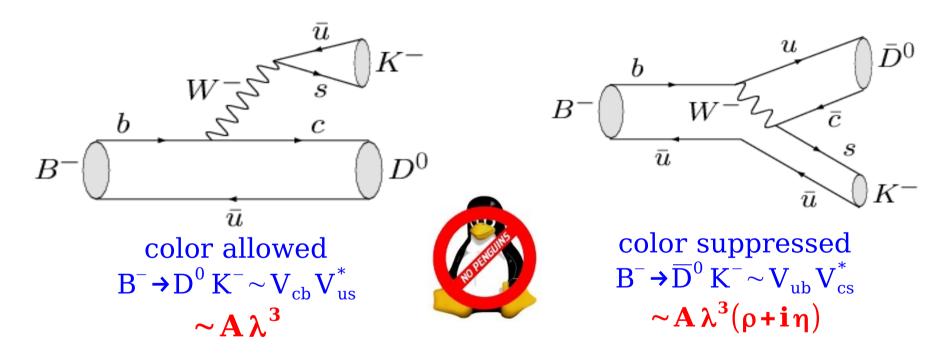
Outline

- Quick estimation of Belle II sensitivity for γ with B→DK, D→K_Sπ⁺π⁻ as golden mode
- Potential improvements

Towards the Ultimate Precision in Flavour Physics

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

- ∘ Theoretically pristine B → DK approach
- ∘ Access γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$



relative magnitude of suppressed amplitude is r_B

$$r_{\rm B} = \frac{|A_{\rm suppressed}|}{|A_{\rm favoured}|} \sim \frac{|V_{\rm ub}V_{\rm cs}^*|}{|V_{\rm cb}V_{\rm us}^*|} \times [{\rm color\ supp}] = 0.1 - 0.2$$

relative weak phase is γ , relative strong phase is δ_B

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

- Reconstruct D in final states accessible to both D^0 and \overline{D}^0
 - D = D_{CP}, CP eigenstates as K^+K^- , $\pi^+\pi^-$, $K_S\pi^0$ **GLW method (Gronau-London-Wyler)**
 - D = D_{sup}, Doubly-Cabbibo suppressed decays as $K\pi$ ADS method (Atwood-Dunietz-Soni)
 - − Three-body decays as D→ $K_S \pi^+ \pi^-$, $K_S K^+ K^-$ GGSZ (Dalitz) method (Giri-Grossman-Soffer-Zupan)
 - Largest effects due to
 - charm mixing
 - charm CP violation

negligible
Y.Grossman, A.Soffer, J.Zupan
[PRD 72, 031501 (2005)]

- Different B decays (DK, D*K, DK*)
 - different hadronic factors (r_B, δ_B) for each

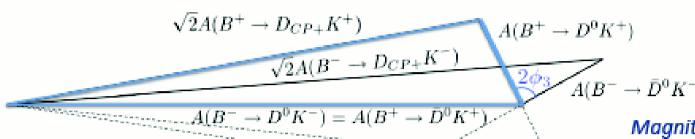
γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

 $B^{\pm} \rightarrow DK^{\pm}$ $B^{\pm} \rightarrow D^{*}K^{\pm}, D^{*} \rightarrow D\pi^{0}$ $B^{\pm} \rightarrow D^{*}K^{\pm}, D^{*} \rightarrow D\gamma$ $B^{\pm} \rightarrow DK^{*\pm}$ $B^{0} \rightarrow DK^{*0}$ $B^{\pm} \rightarrow DK\pi\pi$ $B \rightarrow ...$

 $D \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}...$ $D \rightarrow K_{S}\pi^{0}, K_{S}\eta...$ $D \rightarrow KK\pi^{0}, \pi\pi\pi^{0}...$ $D \rightarrow K_{S}\pi\pi, K_{S}KK$ $D \rightarrow K_{S}\pi\pi\pi^{0}$ $D \rightarrow ...$

D decays to CP eigenstates

Amplitude triangle:



measured observables:

$$R_{\mathrm{CP}^{\pm}} \equiv \frac{Br(B^{-} \rightarrow D_{\mathrm{CP}^{\pm}}K^{-}) + Br(B^{+} \rightarrow D_{\mathrm{CP}^{\pm}}K^{+})}{Br(B^{-} \rightarrow D^{0}K^{-}) + Br(B^{+} \rightarrow \overline{D}^{0}K^{+})}$$

Magnitude of one side is \sim 0.1 of the others while relative magnitude of the others help ϕ_3 constraint.

$$A_{\mathrm{CP}^{\pm}} \equiv \frac{Br(B^{-} \rightarrow D_{\mathrm{CP}^{\pm}}K^{-}) - Br(B^{+} \rightarrow D_{\mathrm{CP}^{\pm}}K^{+})}{Br(B^{-} \rightarrow D_{\mathrm{CP}^{\pm}}K^{-}) + Br(B^{+} \rightarrow D_{\mathrm{CP}^{\pm}}K^{+})}$$

Relation between
$$(R_{CP+}, R_{CP-}, A_{CP+}, A_{CP-})$$
 and (γ, r_B, δ_B)

$$\mathbf{R}_{\mathrm{CP}+} = 1 + \mathbf{r}_{\mathrm{B}}^{2} + 2 \, \mathbf{r}_{\mathrm{B}} \cos \delta_{\mathrm{B}} \cos \gamma$$

$$\mathbf{A_{CP+}} = \frac{+2 \, \mathbf{r_B} \sin \delta_B \sin \gamma}{1 + \mathbf{r_B}^2 + 2 \, \mathbf{r_B} \cos \delta_B \cos \gamma}$$

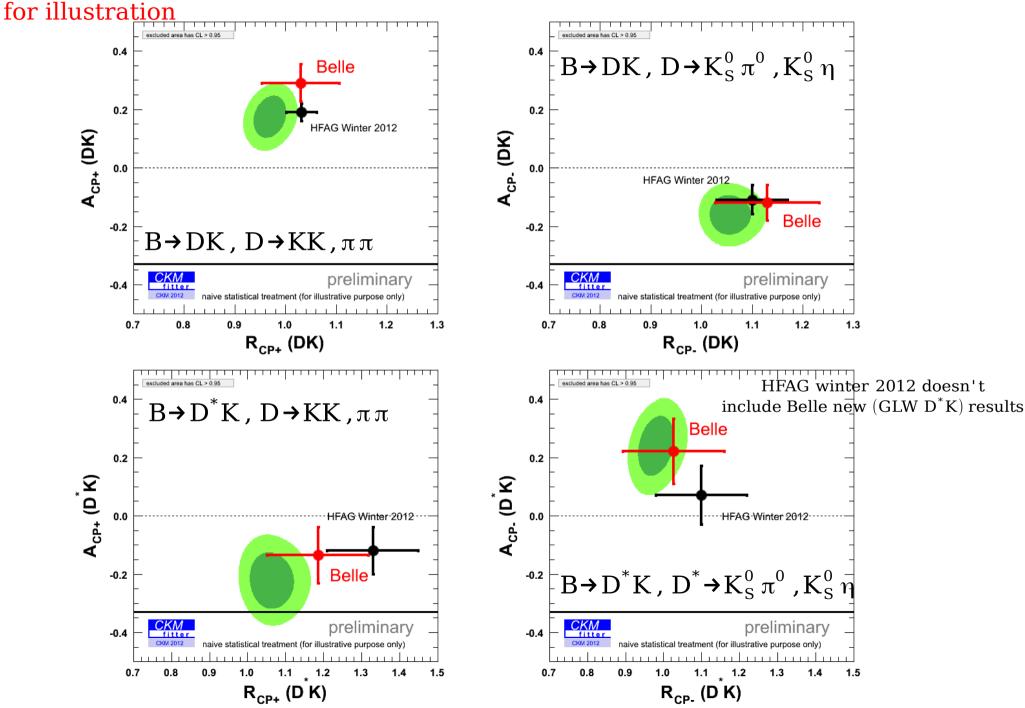
$$R_{CP} = 1 + r_B^2 - 2r_B \cos \delta_B \cos \gamma$$

$$\mathbf{A_{CP}} = \frac{-2 \, \mathbf{r_B} \sin \delta_B \sin \gamma}{1 + \mathbf{r_B}^2 - 2 \, \mathbf{r_B} \cos \delta_B \cos \gamma}$$

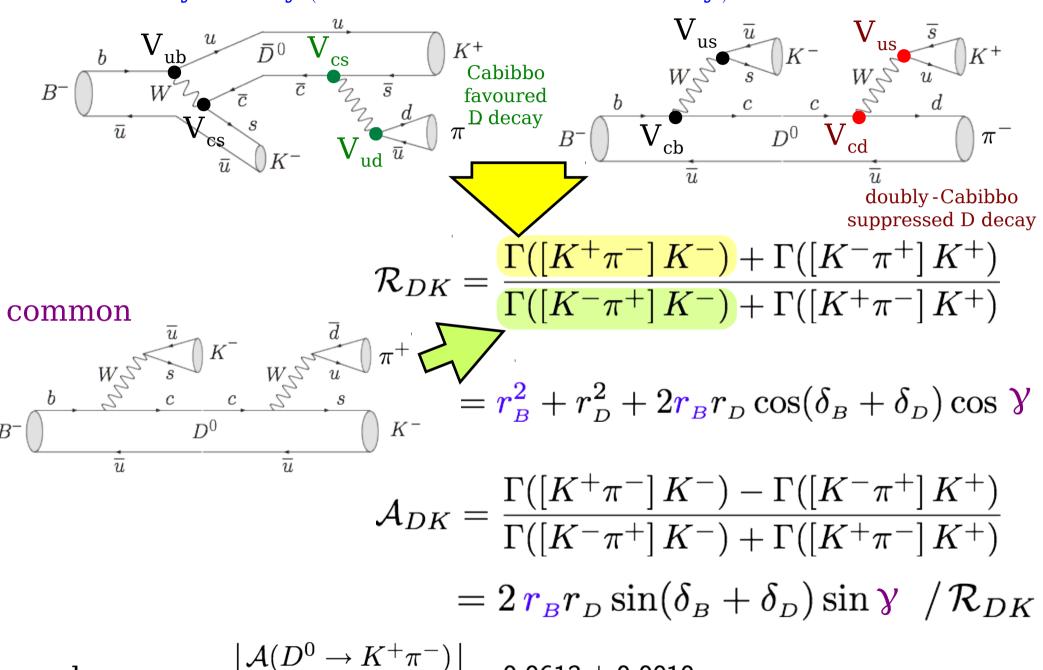
- \Rightarrow look for $R_{CP+} \neq 1$ and $A_{CP+} \neq 0$
- $\Rightarrow \neq CP, \neq sign of asymmetry$

Comparison of the results obtained for GLW D^(*)K with expectations

where ''expectations'' are derived from the GGSZ observables (W . A .), δ_{D} and γ_{UT}



<u>ADS method</u>: γ via the interference in rare $B^- \rightarrow [K^+\pi^-]_D K^-$ decays rate and asymmetry (relative to the common decay):



where $r_D = \left| \frac{\mathcal{A}(D^0 \to K^+\pi^-)}{\mathcal{A}(\bar{D}^0 \to K^+\pi^-)} \right| = 0.0613 \pm 0.0010$

How to get $\delta_{\rm D}$ and related (charm) hadronic parameters ?

- \circ dedicated experiments (CLEO-c, BES III) using quantum correlations, running at $\psi(3770)$
 - \circ CLEO-c: R_D , $\cos \delta_D$, $\sin \delta_D$ (but also BES III result...)
 - \circ CLEO-c: $R_{K\pi\pi^0}$, $\delta_{K\pi\pi^0}$, $R_{K3\pi}$, $\delta_{K3\pi}$

 R_f : coherence factor, can take any value from 0 to 1 indicates lack coherence between the intermediate states involved in the decay

- mixing/CPV results from BaBar, Belle, CDF, LHCb...
 - ∘ D→KK, $\pi\pi$: y_{CP} , A_{Γ} (BaBar, Belle, LHCb)
 - ∘ D \rightarrow K_S⁰ $\pi\pi$: x, y, |q/p|, ϕ (BaBar, Belle)
 - ∘ D→Klv: R_M (BaBar, Belle...)
 - ∘ D → $K \pi \pi^0$: x'', y'' (BaBar)
 - ∘ D→Kπ: x', y' (BaBar, Belle, CDF, LHCb)
 - 0
- CLEO-c/BES III, use external inputs to access the relevant physics parameters
- strong phases information in B-factories/LHCb
- x, y are also needed for D-mixing corrections in ADS observables

$$R^{\mp} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B}\mp\gamma + \delta_{D})$$

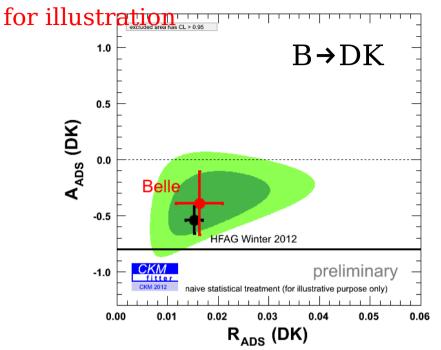
$$\Rightarrow R^{\mp} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B}\mp\gamma + \delta_{D}) - yr_{D}\cos\delta_{D} - yr_{B}\cos(\delta_{B}\mp\gamma) + xr_{D}\sin\delta_{D} - xr_{B}\sin(\delta_{B}\mp\gamma)$$

 \Rightarrow combine charm observables to obtain γ and mixing/CPV charm parameters

 $\delta_{\rm D}$ grand combination à la HFAG \sim 35 observables \overline{n} pt a great fit $(\sim 3\sigma)$ Kπ (LHCb) (1.64) 8 parameters: (0.57 Kπ (CDF) x, y, $\delta_D^{K\pi}$, r_D , A_D , |q|/|p|, ϕ , $\delta_D(K\rho)$ Kπ (Belle) ₹ 0.01) Kπ (BaBar) (3.10) $K\pi\pi^{0}$ (BaBar) (3.37) CLEO-c (1.88) **BES III** (0.37) (0.36) K_sππ (Belle) (1.08) $K_s\pi\pi$ (BaBar) (0.90)(0.68) (1.82) ---- ADS+GLW Combined GGSZ+ADS+GLW ---- All charm 0 Pull (σ) (include K3 π , K $\pi\pi^0$ info, see next slides) 8.0 p-value 0.6 All charm: $\delta_{\rm D}^{\rm K\pi} = (191.4^{+8.2}_{-11.4})^{\circ} (^{+16}_{-30})$ 0.4 GGSZ+GLW+ADS: $\delta_{D}^{K\pi} = (193^{+18}_{-23})^{\circ} (^{+34}_{-77})$ 0.2 0.0 300 50 100 150 200 250 350 $\delta_{\rm D}(K\pi)$

Comparison of the results obtained for D^(*)K with expectations

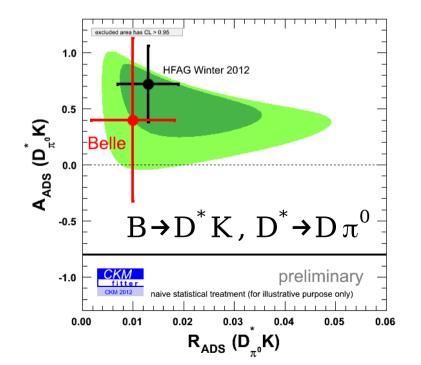
where ''expectations'' are derived from the GGSZ observables, δ_D and γ_{UT}

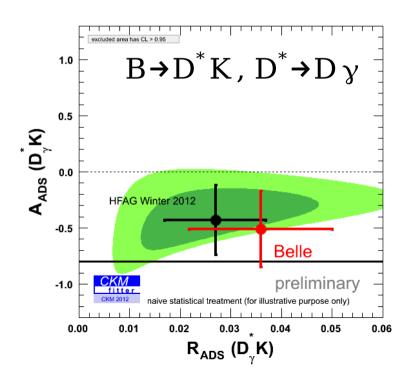


$$\mathbf{R}_{ADS}(\mathbf{DK}) = \mathbf{r}_{B}^{2} + \mathbf{r}_{D}^{2} + 2\mathbf{r}_{B}\mathbf{r}_{D}\mathbf{cos}(\delta_{B} + \delta_{D})\mathbf{cos}\gamma$$
$$\mathbf{A}_{ADS}(\mathbf{DK}) = 2\mathbf{r}_{B}\mathbf{r}_{D}\mathbf{sin}(\delta_{B} + \delta_{D})\mathbf{sin}\gamma/\mathbf{R}_{ADS}(\mathbf{DK})$$

$$\begin{aligned} \mathbf{R}_{\mathrm{ADS}}(\mathbf{D}_{\pi^{0}}^{*}\mathbf{K}) &= \mathbf{r}_{\mathrm{B}}^{*2} + \mathbf{r}_{\mathrm{D}}^{2} + \mathbf{2}\mathbf{r}_{\mathrm{B}}^{*}\mathbf{r}_{\mathrm{D}}\mathbf{\cos}(\delta_{\mathrm{B}}^{*} + \delta_{\mathrm{D}})\mathbf{\cos}\gamma \\ \mathbf{A}_{\mathrm{ADS}}(\mathbf{D}_{\pi^{0}}^{*}\mathbf{K}) &= \mathbf{2}\mathbf{r}_{\mathrm{B}}^{*}\mathbf{r}_{\mathrm{D}}\mathbf{\sin}(\delta_{\mathrm{B}}^{*} + \delta_{\mathrm{D}})\mathbf{\sin}\gamma / \mathbf{R}_{\mathrm{ADS}}(\mathbf{D}_{\pi^{0}}^{*}\mathbf{K}) \end{aligned}$$

$$\begin{aligned} \mathbf{R}_{ADS}(\mathbf{D}_{\gamma}^{*}\mathbf{K}) &= \mathbf{r}_{B}^{*2} + \mathbf{r}_{D}^{2} - 2\mathbf{r}_{B}^{*}\mathbf{r}_{D}\mathbf{cos}(\delta_{B}^{*} + \delta_{D})\mathbf{cos}\,\gamma \\ \mathbf{A}_{ADS}(\mathbf{D}_{\gamma}^{*}\mathbf{K}) &= -2\mathbf{r}_{B}^{*}\mathbf{r}_{D}\mathbf{sin}(\delta_{B}^{*} + \delta_{D})\mathbf{sin}\,\gamma/\mathbf{R}_{ADS}(\mathbf{D}_{\gamma}^{*}\mathbf{K}) \end{aligned}$$





Sensitivity to γ in $B \rightarrow D(K_S \pi \pi)K$ mode

sensitivity to γ/ϕ_3 varies across the Dalitz plot

 $\gamma = 75^{\circ}$, $\delta = 180^{\circ}$, $r_{B} = 0.125$ $w=1/(d^2L/d\gamma^2)$ **GLW** like Interference of BABAR $B^- \rightarrow D^0 K^-$, $D^0 \rightarrow K_S^0 \rho^0$ pre linanur y with $B^- \rightarrow \overline{D}^0 K^-$, $\overline{D}^0 \rightarrow K_s^0 \rho^0$ DCS $K^*(1^2430)$ 1.5 **ADS** like Interference of $B^- \rightarrow D^0 K^-$, $D^0 \rightarrow K^{*+} \pi^-$ DCS K*(892 10 with 0.5 $B^- \rightarrow \overline{D}^0 K^-$, $\overline{D}^0 \rightarrow K^{*+} \pi^$ $m_{\perp}^{2} (GeV^{2}/c^{4})$

- golden mode!! even more for Belle II than for LHCb
- focusing our efforts/resources on this mode

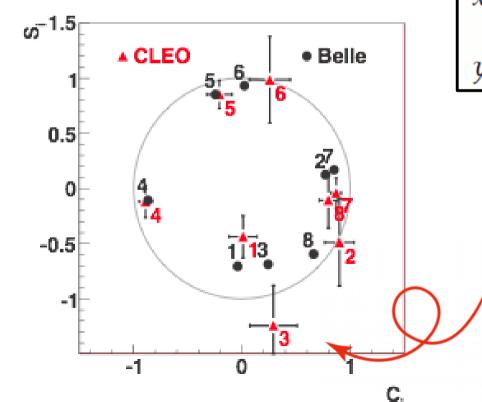
Binned Dalitz method: avoid the modeling error by ''optimal'' binning of the Dalitz plot

[choice of bins guided by model, but extraction of γ is not biased by this choice]

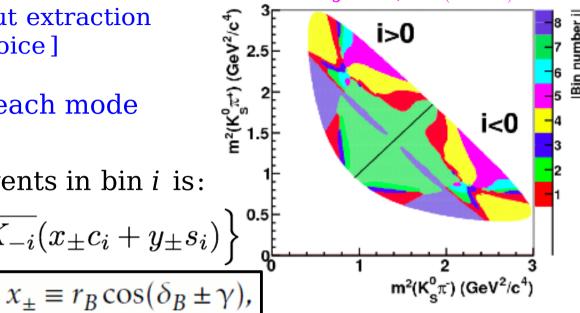
minimize χ^2 in fit to all bins for each mode

Expected number of $B^{\pm} \rightarrow DK^{\pm}$ events in bin *i* is:

$$N_{i}^{\pm} = h \left\{ K_{i} + r_{B}^{2} K_{-i} + 2 \sqrt{K_{i} K_{-i}} (x_{\pm} c_{i} + y_{\pm} s_{i}) \right\}_{\mathbf{q}}^{\mathbf{0.5}}$$



Bondar and Poluektov EPJ C55, 51 (2008)



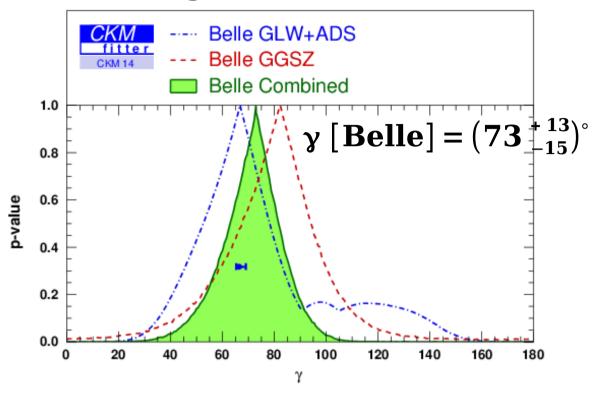
 $y_{\pm} \equiv r_B \sin(\delta_B \pm \gamma).$

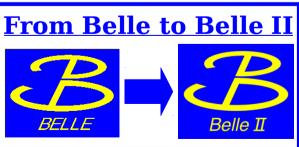
 K_i is the # of events in bin *i* from a flavour-tagged sample $(D^{*\pm} \rightarrow D\pi^{\pm})$

 c_i and s_i contain information about the strong-phase difference in bin i

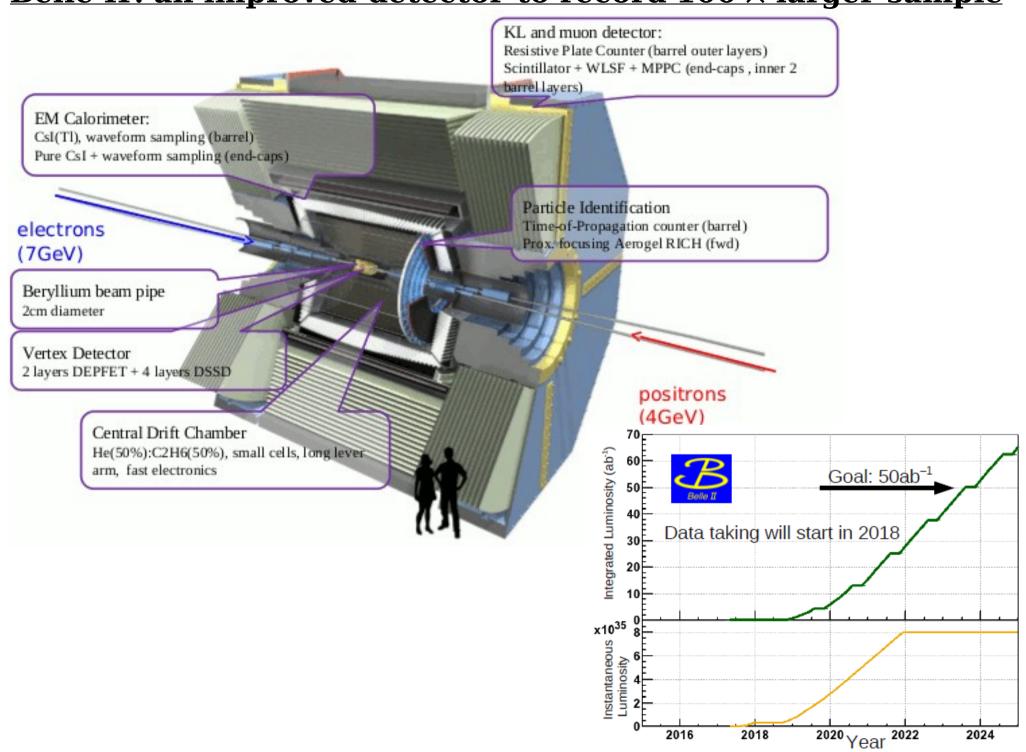
(use CLEO data for $\psi(3770) \rightarrow D^0 \overline{D}^0$ here; measured by BES-III too)

Combining measurements for y from all methods





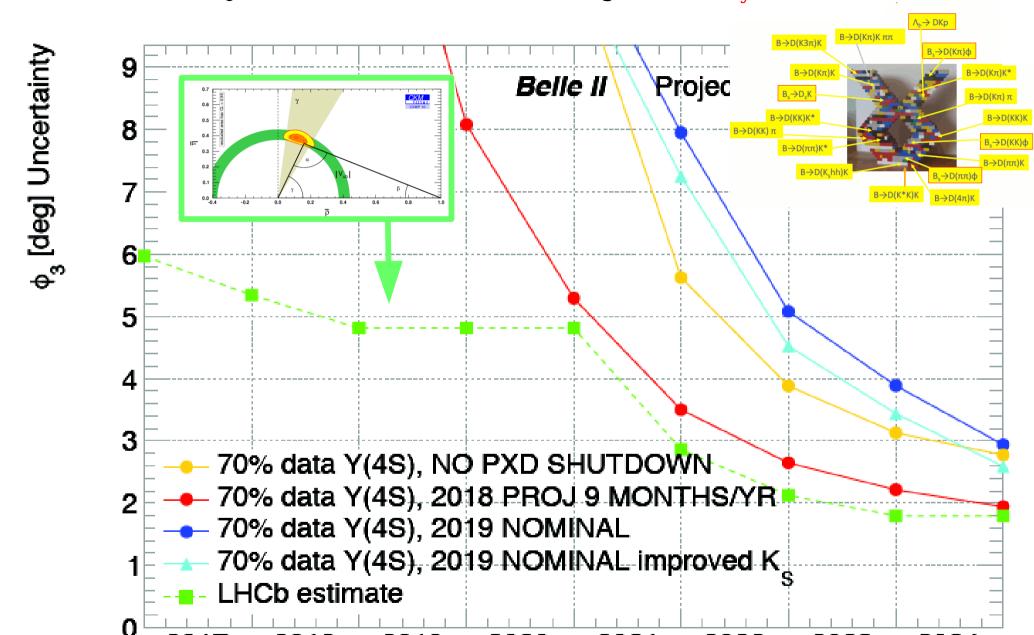
Belle II: an improved detector to record 100 × larger sample



Ultimate y-from-tree decays

precision will be reached through many individual measurements

 $(\sigma_{theory} \ negligible)$



Year

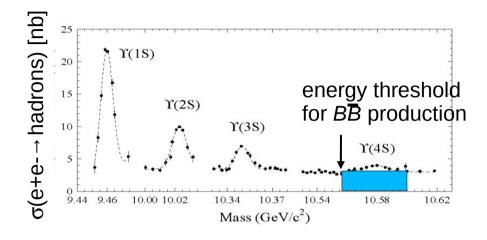
Potential improvements Belle II vs Belle

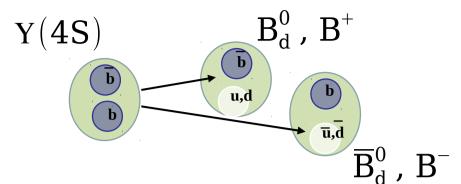
(beyond only statistics)

- continuum suppression
- PID performances
- o new possible avenues...

Y(4S) B-factory

but also continuum factory....

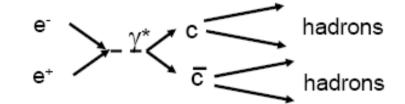




- 2 B's and nothing else!
- 2 B mesons are created simultaneously in a L=1 coherent state
 - \Rightarrow before first decay, the final states contains a B and a \overline{B}

"on resonance" production

$$e^+e^- \rightarrow Y(4\,S) \rightarrow B_d^0\overline{B}_d^0$$
, B^+B^-
 $\sigma(e^+e^- \rightarrow B\,\overline{B}) \simeq 1.1 \ nb \ (\sim 10^9 \ B\,\overline{B} \ pairs)$



• ''continuum'' production $(q\overline{q} = u\overline{u}, d\overline{d}, s\overline{s}, c\overline{c})$

$$\sigma(e^+e^- \rightarrow c\overline{c}) = 1.3 \text{ nb}$$

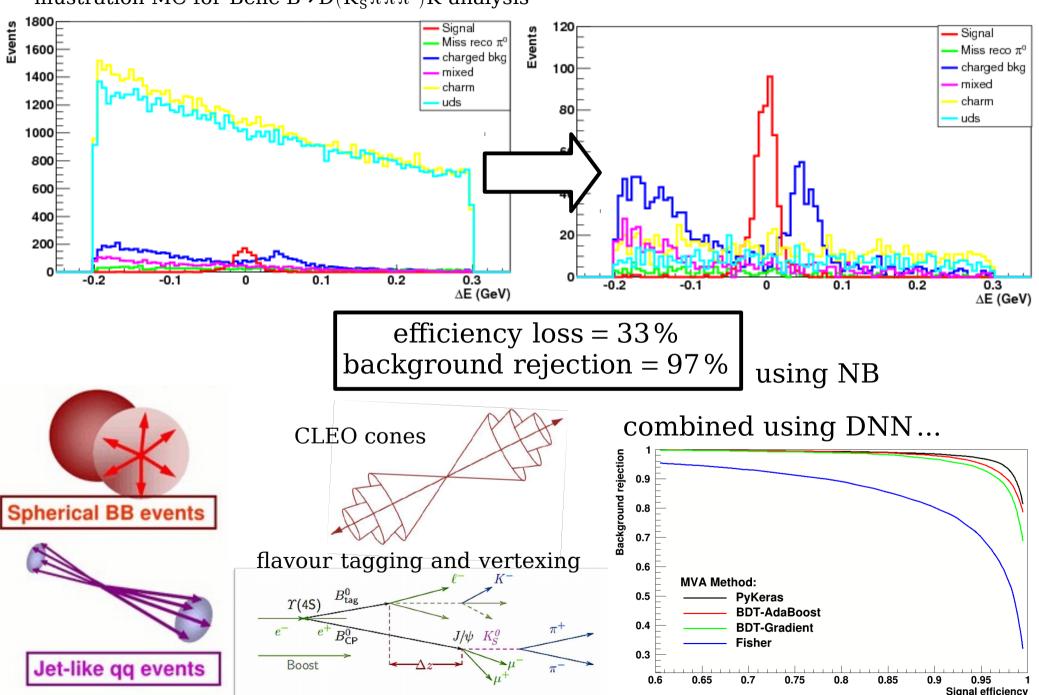
$$\sigma(e^+e^- \rightarrow s\overline{s}) = 0.4 \text{ nb}$$

$$\sigma(e^+e^- \rightarrow u\overline{u}) = 1.6 \text{ nb}$$

$$\sigma(e^+e^- \rightarrow d\overline{d}) = 0.4 \text{ nb}$$

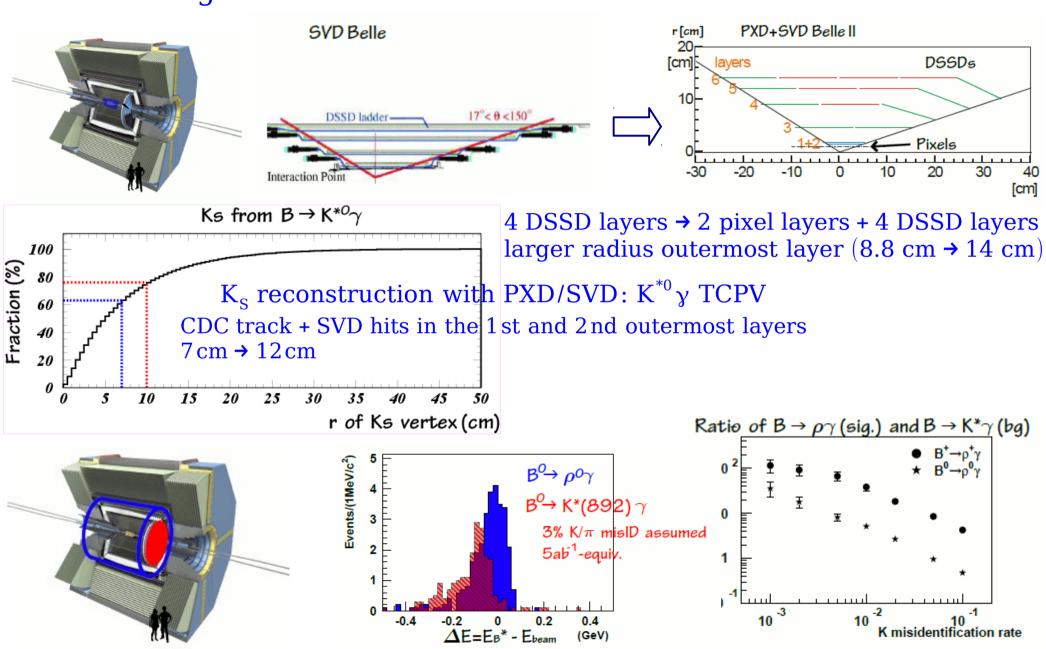
$B \rightarrow [K_S \pi^+ \pi^-]_D K^{\pm}$ Dalitz Analysis with Belle II

illustration MC for Belle $B \rightarrow D(K_S \pi \pi \pi^0)K$ analysis



Belle II in few words

 \circ collecting $50ab^{-1}$ from 2019 to 2027



⇒ new detectors (CDC, TOP, ARICH) in place (see P. Urquijo's talk)

B→DK[±] at Belle II

 $B \rightarrow D\pi$ $B \rightarrow DK$

illustration with Belle $B \rightarrow D(K\pi)K$ analysis

$$\begin{split} N_{\eta,\,KID > 0.6}^{DK} &= \frac{1}{2} \left(1 - \eta A^{DK} \right) \, N_{tot}^{D\pi} \, R_{K/\pi} \, \epsilon \\ N_{\eta,\,KID < 0.6}^{DK} &= \frac{1}{2} \left(1 - \eta A^{DK} \right) \, N_{tot}^{D\pi} \, R_{K/\pi} \, \left(1 - \epsilon \right) \\ N_{\eta,KID > 0.6}^{D\pi} &= \frac{1}{2} \left(1 - \eta A^{D\pi} \right) \, N_{tot}^{D\pi} \, \kappa \\ N_{\eta,KID < 0.6}^{D\pi} &= \frac{1}{2} \left(1 - \eta A^{D\pi} \right) \, N_{tot}^{D\pi} \, \left(1 - \kappa \right) \end{split}$$

KID>0.6 (kaon-like)

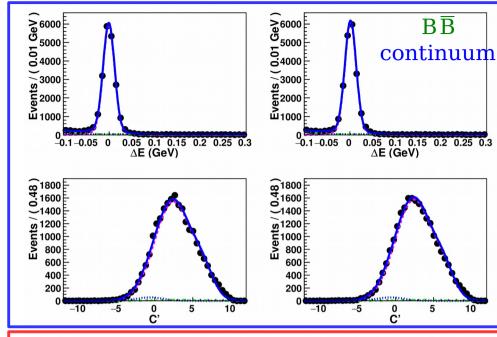
140	kaon fake $(1-\epsilon)$	kaon eff ε	pion eff $(1-\kappa)$	pion fake κ	⇐
MC data	14.70 ± 0.06 15.86 ± 0.40	85.41 ± 0.06 84.32 ± 0.39	95.42 ± 0.03 92.13 ± 0.46		

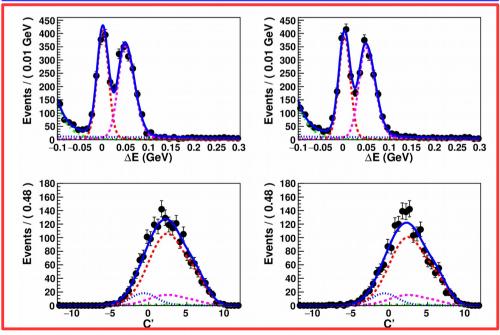
for Belle

for Belle II: performances expected

to be as good (better?) as for Belle MC...

one of the important outputs of current data taking (jury is still out)





Lot of interesting modes...

not used until now

D mode	$2F_{+}-1$	branching ratio
		$(imes 10^{-3})$
K^+K^-	+1	3.96 ± 0.08
$\pi^{+}\pi^{-}$	+1	$1.40\!\pm\!0.03$
$\pi^0 \ \pi^0$	+1	$0.82 \!\pm\! 0.04$
$K_{ m L}^0\pi^0$	+1	10.0 ± 0.7
$ extstyle K_{ extstyle S}^0 \pi^0 \ \pi^0$	+1	9.1 ± 1.1
$K^0_S\eta\pi^0$	+1	$5.5 \!\pm\! 1.1$
$\mathbf{K}_{\mathrm{S}}^{0}\mathbf{K}_{\mathrm{S}}^{0}\mathbf{K}_{\mathrm{S}}^{0}$	+1	0.91 ± 0.13
$\pi\pi\pi^0$		14.3 ± 0.6
${\rm K}{\rm K}\pi^0$		3.3 ± 0.1
ππππ		7.4 ± 0.2

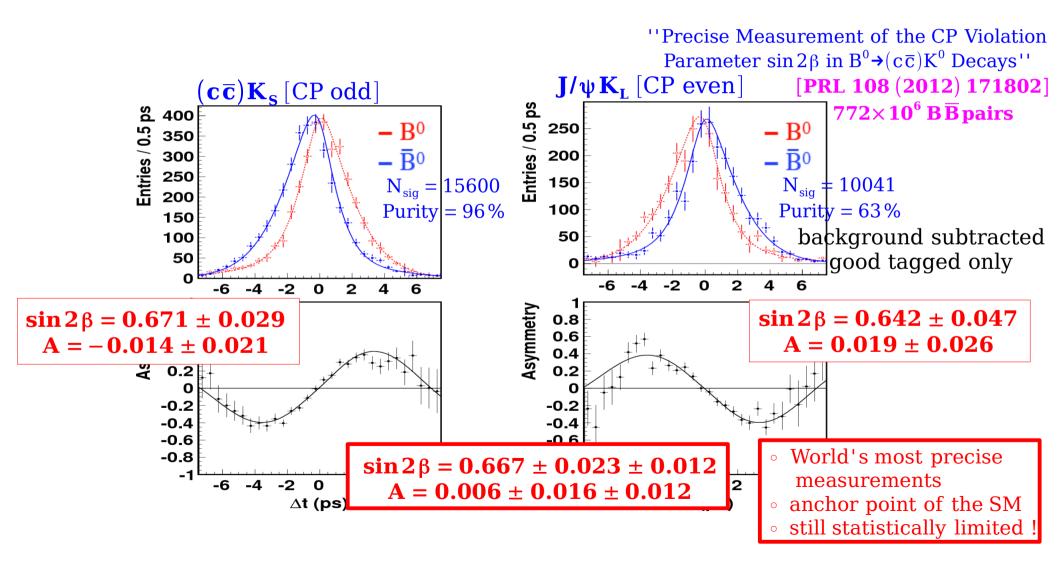
D mode	$2F_{+}-1$	branching ratio
		$(imes 10^{-3})$
${\rm K}_{\rm S}^0\pi^0$	-1	$11.9\!\pm\!0.4$
${ m K}_{ m S}^0\eta$	-1	$4.8 \!\pm\! 0.3$
extstyle ext	-1	$9.4\!\pm\!0.5$
$\mathbf{K}_{\mathrm{S}}^{0}\mathbf{K}_{\mathrm{S}}^{0}\mathbf{K}_{\mathrm{L}}^{0}$	-1	1.0
$\eta\pi^0\pi^0$	-1	unknown
η ' π^0 π^0	-1	unknown
$\mathrm{K}^0_\mathrm{S}\mathrm{K}^0_\mathrm{S}\pi^0$	-1	< 0.6
$K^0_S K^0_S \eta$	-1	unknown

D mode branching ratio $(\times 10^{-3})$

challenging modes with K_L , two π^0 's...

$\mathbf{B} \to \mathbf{D}(\mathbf{K}_{\mathbf{L}} \pi \pi) \mathbf{K}$

- ∘ D→ $K_L\pi\pi$ has never been explored in B-factories
- \circ However, $J/\psi K_L$ has been used for $\sin 2\beta$ extraction
- with a reasonable efficiency/purity (and a significant impact)
- potential is even more promising in Belle II (upgraded KLM with scintillators)



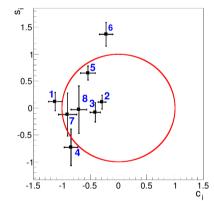
Estimates of γ sensitivity with $B^{\pm} \rightarrow D(K_S \pi \pi \pi \pi^0) K^{\pm}$

- ∘ The decay $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ has a relatively large branching fraction of 5.2%, almost twice that of $K_S^0 \pi^+ \pi^-$
- Interesting resonance substructure
 - $-K_S^0 \omega CP$ eigenstate GLW like
 - $-K^{*+}\pi^{-}\pi^{0}$ Cabibbo favored state (CF) ADS like
 - CLEO-c obtained $F_+ = 0.240 \pm 0.021$ (significantly CP-odd)

Bin number	Specification
1	$m(\pi^+\pi^-\pi^0)\approx m(\omega)$
2	$m(K_S^0\pi^-) \approx m(K^{*-}) \& m(\pi^+\pi^0) \approx m(\rho^+)$
3	$m(K_S^0\pi^+) \approx m(K^{*+}) \& m(\pi^-\pi^0) \approx m(\rho^-)$
4	$m(K_S^0\pi^-)\approx m(K^{*-})$
5	$m(K_S^0\pi^+) \approx m(K^{*+})$
6	$m(K_S^0\pi^0)\approx m(K^{*0})$
7	$m(\pi^+\pi^0) pprox m(ho^+)$
8	Remainder

∘ $c_i < 0 \Rightarrow CP$ oddness of $K_S^0 \pi^+ \pi^- \pi^0$

•			
Bin	c_i	Si	ώ¯
1	-1.12 ± 0.12	0.12 ± 0.17	1.5
2	-0.29 ± 0.07	0.11 ± 0.13	1 <u>-</u>
3	-0.41 ± 0.09	-0.08 ± 0.18	0.5
4	-0.84 ± 0.12	-0.73 ± 0.34	1 82,4
5	-0.54 ± 0.13	0.65 ± 0.13	0 7 7
6	-0.22 ± 0.12	1.37 ± 0.22	-0.5
7	-0.90 ± 0.16	-0.12 ± 0.40	1 1
8	-0.70 ± 0.14	-0.03 ± 0.44	-1.5 -1 -0.5



- \circ Project to a 50 ab $^{-1}$ sample $\sigma_{\gamma} \sim 3.5^{\circ}$
- ∘ compare to $B^{\pm} \rightarrow D(K_S^0 \pi^+ \pi^-) K^{\pm} \sigma_{\gamma} \sim 2^{\circ}$
- on-going Belle analysis should give us a more precise estimation soon

c_i and s_i at charm factory

at $\psi(3770)$, $J^{PC}=1^{-1}$, decays to a $D\overline{D}$ pair (decay are quantum related) D mesons decay to final states f_a and f_b with CP eigenvalues η_a and η_b CP conservation requires that $\eta_a \eta_b (-1)^L = 1$, hence $\eta_a / \eta_b = -1$ \Rightarrow if one D meson is reconstructed in a CP even (odd) eigenstate, other D meson must be CP odd (even) eigenstate

measurements of c_i and s_i require that one of the D mesons decays to $K_S^0\pi^+\pi^-$ final state and the other decays to final state X_D if X_D is CP even (odd) eigenstate, D meson decaying to $K_S^0\pi^+\pi^-$ must be CP-odd (even) amplitude and partial width of D_+ at Dalitz plot coordinate (m_-^2, m_+^2) :

$$\begin{split} A(D_{\pm} \to K_{\rm S}^0 h^+ h^-) &= \frac{1}{\sqrt{2}} \left(A_D \pm \overline{A}_D \right), \\ \frac{d\Gamma(D_{\pm} \to K_{\rm S}^0 h^+ h^-)}{dm_-^2 dm_+^2} &= \frac{1}{2} \left(A_D^2 + \overline{A}_D^2 \right) \pm A_D \overline{A}_D \cos \delta_D. \end{split}$$

decay rate to bin i of the D₊ Dalitz plot:

$$\Gamma_i(D_{\pm} \to K_{\rm S}^0 h^+ h^-) \propto \frac{1}{2} (T_i + T_{-i}) \pm \sqrt{T_i T_{-i}} c_i.$$

$$\frac{\text{if } X_{\rm D} \text{ is } K_{\rm S}^0 \pi^+ \pi^-:}{\Gamma_{ij} \propto T_i T_{-j} + T_{-i} T_j - 2 \sqrt{T_i T_{-i} T_j T_{-j}} (c_i c_j + s_i s_j).}$$

arXiv:1010.2817, arXiv:0903.1681

$$c_{i}$$
, s_{i} for $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$
$$M_{i}^{\pm} = h_{CP\pm}(K_{i} \pm 2c_{i}\sqrt{K_{i}K_{-i}} + K_{-i}),$$

$$M_{ij} = h_{corr}(K_i K_{-j} + K_{-i} K_j - 2\sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j)).$$

$$C_i'$$
, S_i' for $D \rightarrow K_L^0 \pi^+ \pi^ M_i'^{\pm} = h_{CP\pm}(K_i' \mp 2c_i' \sqrt{K_i' K_{-i}'} + K_{-i}')$,

$$M'_{ij} = h_{corr}(K_i K'_{-j} + K_{-i} K'_j + 2\sqrt{K_i K'_{-j} K_{-i} K'_j} (c_i c'_j + s_i s'_j))$$

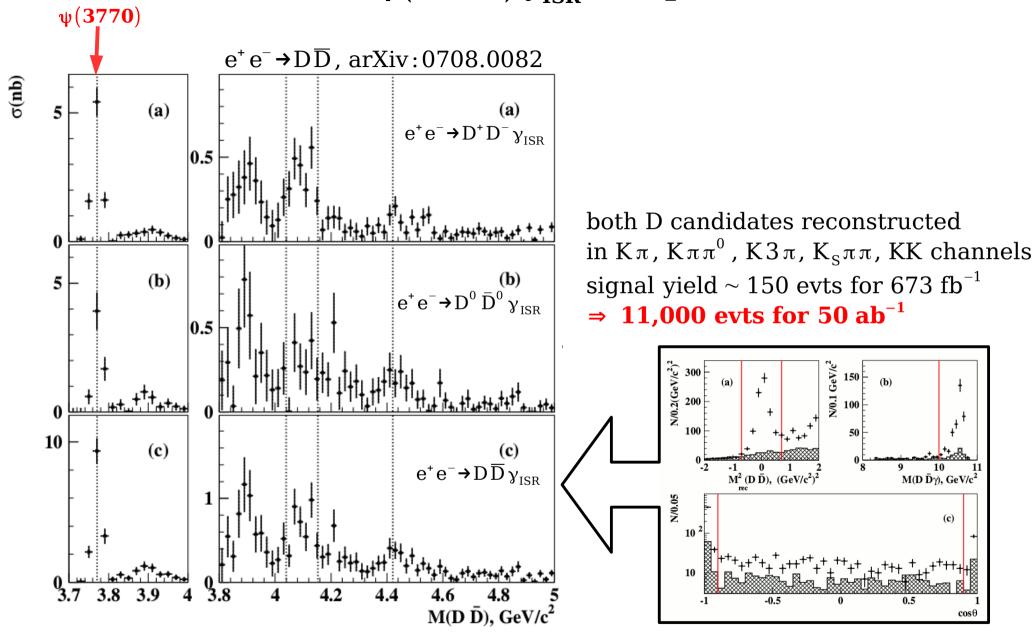
Δc_i , Δs_i are model-dependent

with assumption made to deduce Δc_i , as DCS decays contribute with opposite sign, CP-eigenstate amplitudes related by factor $(1-2\,r\,e^{i\delta})$, $r=\tan^2\theta_C$, δ any value use BaBar model

i	Δc_i	Δs_i
1	0.39 ± 0.17	0.07 ± 0.06
2	0.18 ± 0.05	0.01 ± 0.10
3	0.61 ± 0.15	0.30 ± 0.12
4	0.09 ± 0.08	0.00 ± 0.08
5	0.16 ± 0.17	0.06 ± 0.06
6	0.57 ± 0.21	-0.15 ± 0.24
7	0.03 ± 0.01	-0.04 ± 0.06
8	-0.10 ± 0.15	-0.15 ± 0.21

By the way, c_i and s_i come from charm factories (CLEO-c, BESIII) but could we use $e^+e^- \rightarrow \psi(3770)\gamma_{ISR}$ sample?

Could we use $e^+e^- \rightarrow \psi(3770)\gamma_{ISR}$ sample?

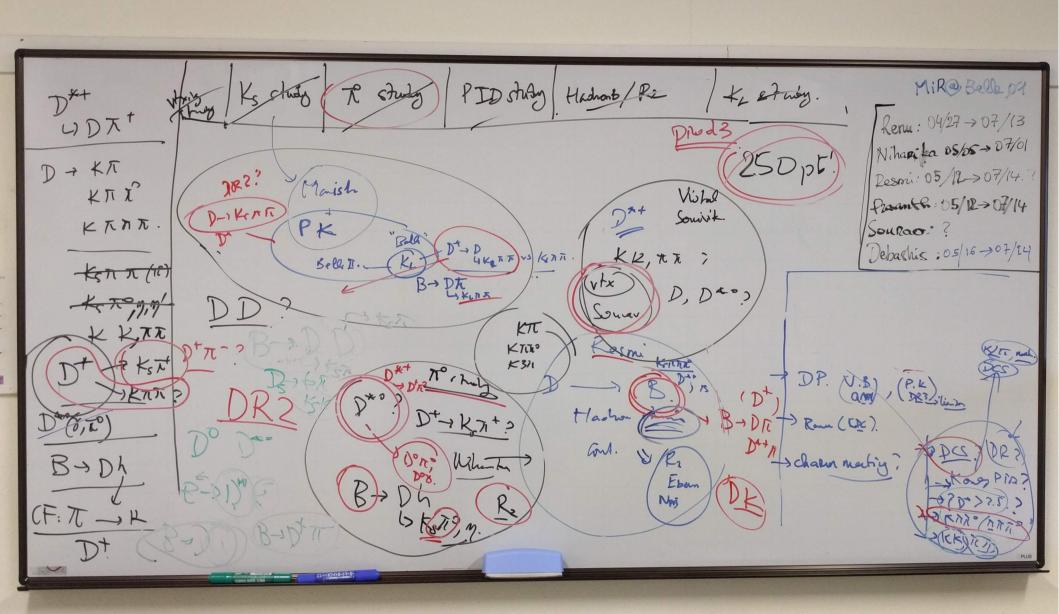


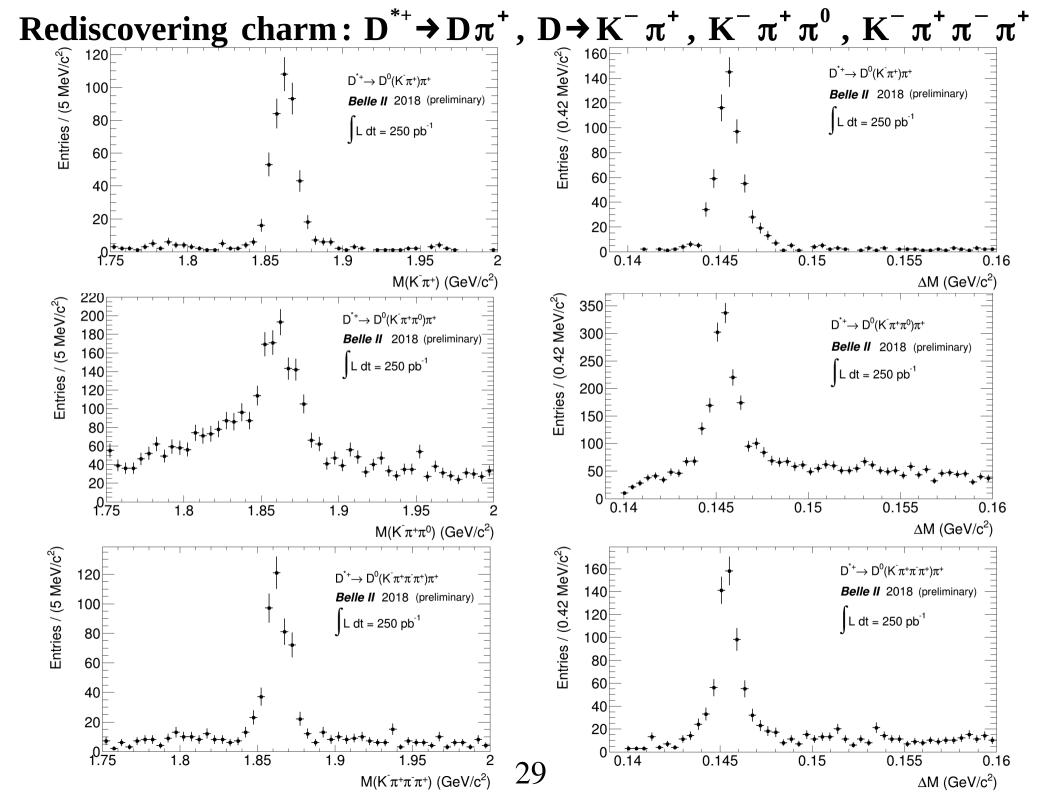
to be compared to CLEO-c, DT yield $(K_S\pi\pi, K\pi + K\pi\pi^0 + K3\pi + K_S\pi\pi + KK) = 7,000$ evts @ 0.8 fb⁻¹ only for $K_S\pi\pi$ mode, only for 0.8 fb⁻¹ so doesn't seem to be competitive

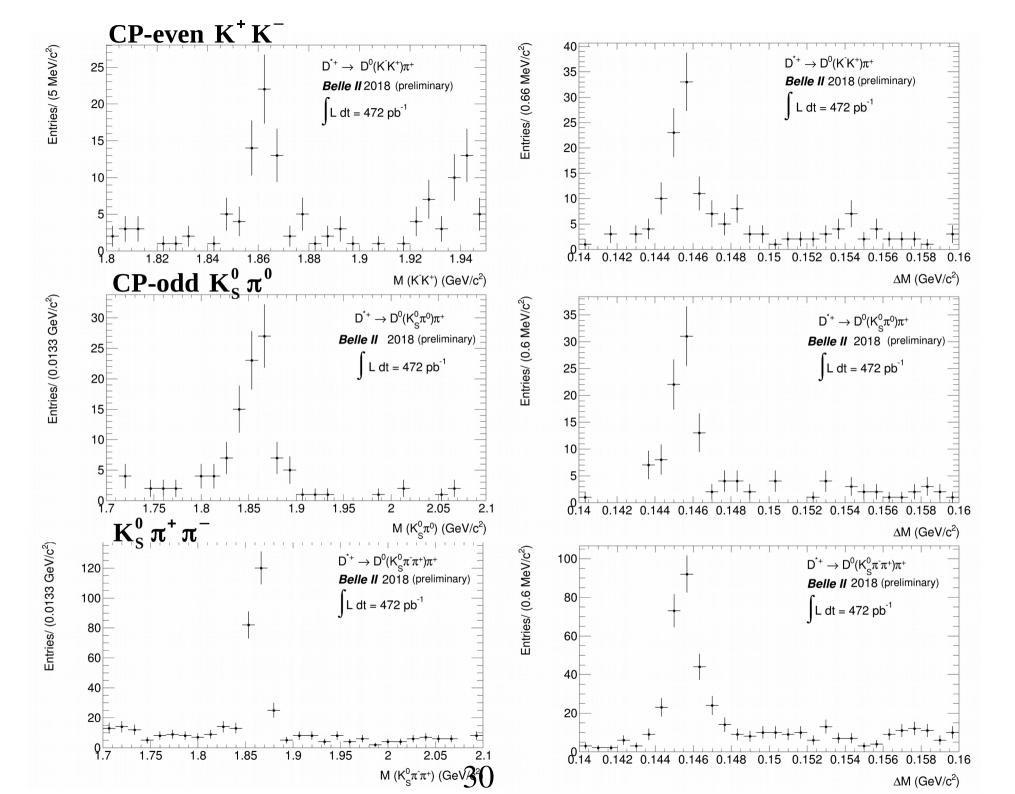
Time - dependent measurements

- All of the measurements presented so far were time-independent
- Time-dependent measurements (mixing induced CPV) also possible:
 - B⁰ → D^(*)π, B⁰ → D^(*)ρ
- ∘ In order to extract γ from B → SS/SV decays, must supply $r = |A_{DCS}/A_{CF}|$ externally (expected to be ~ 1-2%), usually assuming SU(3) symmetry
 - \Rightarrow not good idea to include those measurements in γ average
- \circ In B \rightarrow VV decays, one can extract all physics parameters from data
- Belle study: $\sim 100 \, \text{k}$ evts per ab^{-1} , 3 helicity configurations: $A = \sum_{\lambda} A_{\lambda}$ we use Cartesian coordinates $\{r_{\lambda}, \delta_{\lambda}, \phi_{w}\} \rightarrow \{x_{\lambda}, y_{\lambda}, \overline{x}_{\lambda}, \overline{y}_{\lambda}\}$ $\sigma(2\beta + \gamma) \approx 11^{\circ}$ for Belle II with 50 ab^{-1}
- on-going Belle analysis should give us a more precise estimation soon

A look at first data... (phase 2)

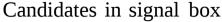


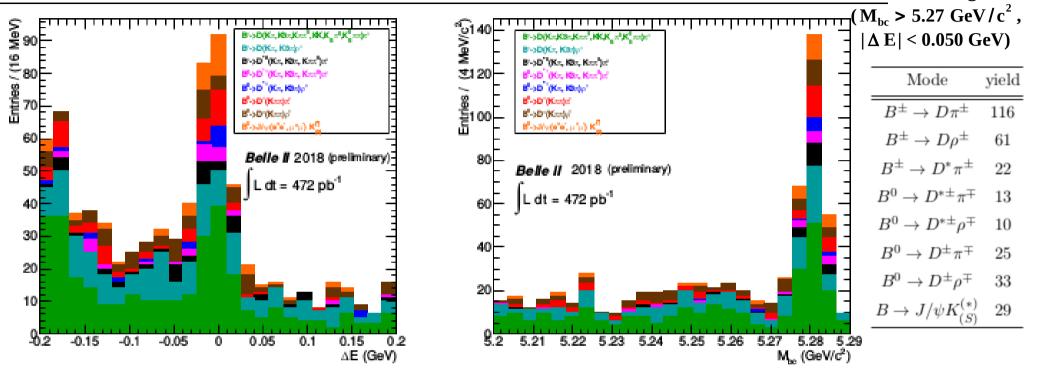




Rediscovering beauty: $B \rightarrow D^{(*)}h + B \rightarrow J/\psi K^{(*)}$

Results for 0.5 fb⁻¹





Show capacity for charm physics in $e^+e^- \rightarrow c \bar{c}$

- \circ D⁰, D⁺, D^{*}
- Cabibbo favoured and suppressed modes

... for B-physics

- hadronic modes from b→c
- ∘ semileptonic decay modes from b→c

Conclusion

"Data! data!" he cried impatiently
"I can't make bricks without clay." (Arthur Conan Doyle)

- \circ Promising perspectives at Belle II for γ measurement
- To stay competitive, we need to stay on schedule...
- With first data, more realistic estimation on going
- But also plenty of room for improvements
 - improved methods
 - new modes (some pioneered on Belle data sample)

equations for the rate of events in bins i and -i of the Dalitz plots

 $n_+^2 \left[\text{GeV}^2 / c^4 \right]$

for B⁻ and B⁺ decays:

$$x_{\pm} \equiv r_B \cos(\delta_B \pm \gamma),$$

 $y_{\pm} \equiv r_B \sin(\delta_B \pm \gamma).$

$$\Gamma_{+i}(B^{-} \to D(\to K_{\rm S}^{0}h^{+}h^{-})K^{-}) \propto \left[T_{+i} + (x_{-}^{2} + y_{-}^{2})T_{-i} + 2\sqrt{T_{+i}T_{-i}}(x_{-}c_{+i} + y_{-}s_{+i})\right],$$

$$\Gamma_{-i}(B^{-} \to D(\to K_{\rm S}^{0}h^{+}h^{-})K^{-}) \propto \left[T_{-i} + (x_{-}^{2} + y_{-}^{2})T_{+i} + 2\sqrt{T_{+i}T_{-i}}(x_{-}c_{-i} + y_{-}s_{-i})\right],$$

$$\Gamma_{+i}(B^{+} \to D(\to K_{\rm S}^{0}h^{+}h^{-})K^{+}) \propto \left[T_{-i} + (x_{+}^{2} + y_{+}^{2})T_{+i} + 2\sqrt{T_{+i}T_{-i}}(x_{+}c_{+i} - y_{+}s_{+i})\right],$$

$$\Gamma_{-i}(B^{+} \to D(\to K_{\rm S}^{0}h^{+}h^{-})K^{+}) \propto \left[T_{+i} + (x_{+}^{2} + y_{+}^{2})T_{-i} + 2\sqrt{T_{+i}T_{-i}}(x_{+}c_{-i} - y_{+}s_{-i})\right].$$

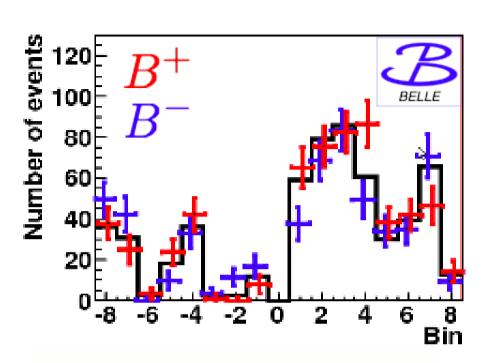
parameters $T_{\pm i}$ can be determined by measuring decay rates of flavour-tagged $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays, i.e. where D meson can be identified as D^0 or \overline{D}^0

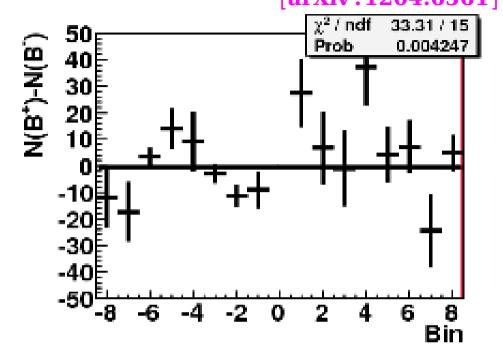
measuring B \rightarrow DK decay rates in each bin, 2k+3 unknowns = $\mathbf{c_i}$, $\mathbf{s_i}$, $\mathbf{r_B}$, $\delta_{\mathbf{B}}$ and γ k \geq 2: greater number of equations than unknowns and γ can be determined preferable to perform dedicated measurements of $\mathbf{c_i}$ and $\mathbf{s_i}$, use them as inputs

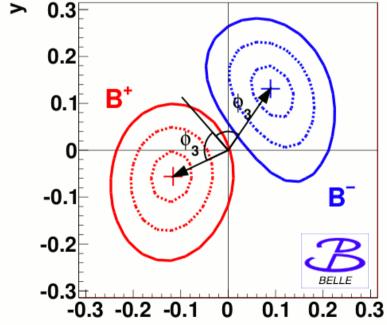
Binned Dalitz method result in B → DK

X

 $772 \, M \, B \overline{B}$ PRD 85, 112014 (2012) [arXiv:1204.6561]







$$\gamma = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^{\circ}$$

$$r_B = 0.145 \pm 0.030 \pm 0.010 \pm 0.011$$

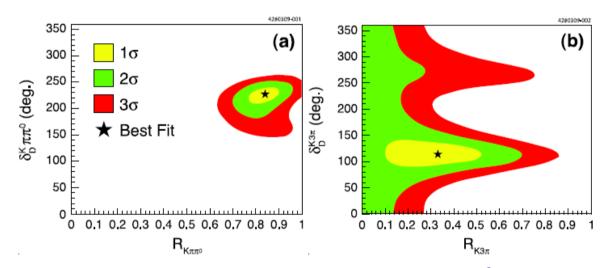
$$\delta_{\rm B} = (129.9 \pm 15.0 \pm 3.8 \pm 4.7)^{\circ}$$

uncertainty in c_i, s_i from CLEO data size (can be reduced using future BES-III data)

quasi-GLW, quasi-ADS...

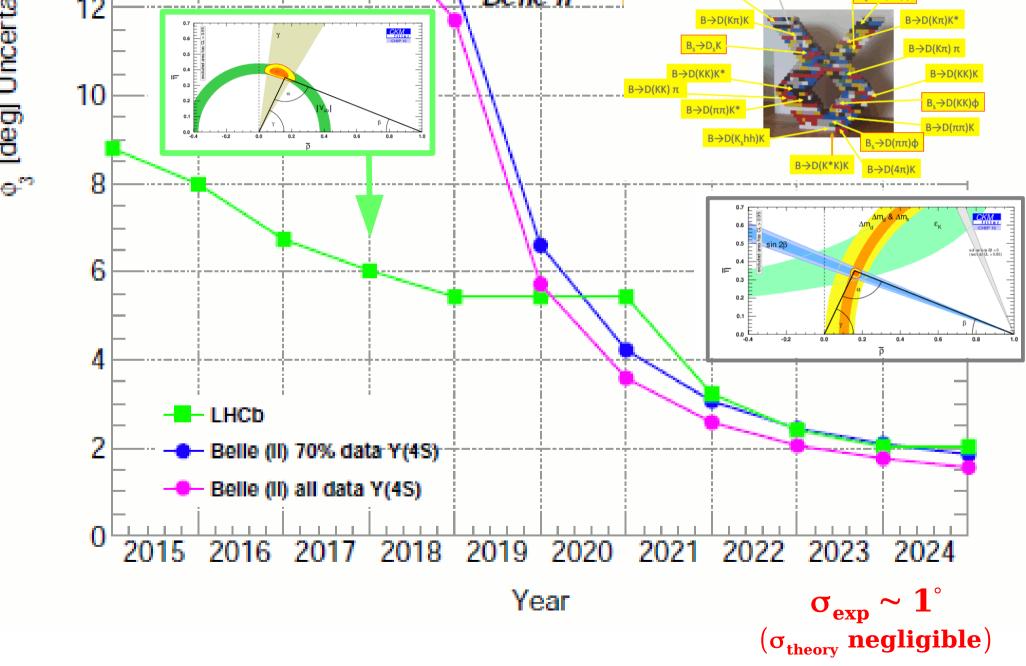
certain multi-body decays are almost pure CP-eigenstates: \Rightarrow quasi-GLW, for example for D \rightarrow 4 π , 2F $_{+}$ -1 = 0.737 ± 0.028

other like ADS modes: for example $D \rightarrow K \pi \pi^0$, coherence factor ~ 1



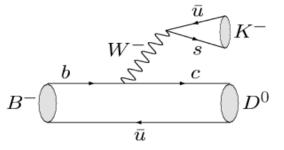
yields of double-tagged events where one meson decays into $K^-\pi^+\pi^0$ (or $K3\pi$), and the other meson decays into CP-odd, CP-even and $K\pi$

Ultimate y-from-tree decays precision will be reached through many individual measurements $\Lambda_b \rightarrow DKp$ ္နဲ့ [deg] Uncertainty $B \rightarrow D(K\pi)K \pi\pi$ $B \rightarrow D(K3\pi)K$ Belle II 12 $B \rightarrow D(K\pi)K$ $B \rightarrow D(K\pi)K^*$ $B_s \rightarrow D_s K$ $B \rightarrow D(K\pi) \pi$ $B \rightarrow D(KK)K^*$ $B \rightarrow D(KK)K$ 10 $B_s \rightarrow D(KK) \varphi$ $B \rightarrow D(\pi\pi)K$ $B \rightarrow D(\pi\pi)K$ $B \rightarrow D(K_c hh)K$ $B_c \rightarrow D(\pi\pi) \Phi$ 8 6 4 - LHCb 2 Belle (II) 70% data Y(4S): Belle (II) all data Y(4S)

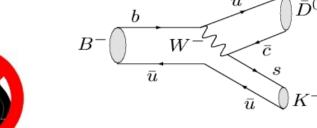


γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

- Theoretically pristine B→DK approach
- ∘ Access γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$



color allowed $B^- \rightarrow D^0 K^- \sim V_{cb} V_{us}^*$ $\sim A \lambda^3$

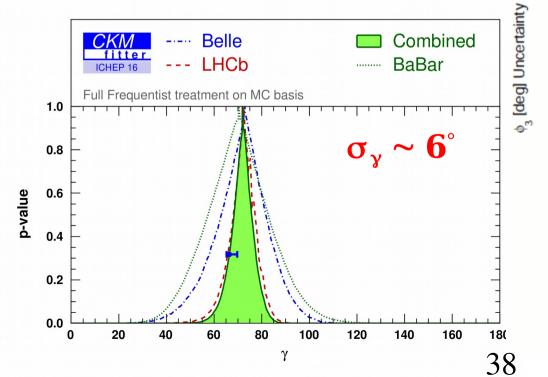


relative weak phase is γ relative strong phase is δ_B

 $r_{\rm B} \simeq 0.1$

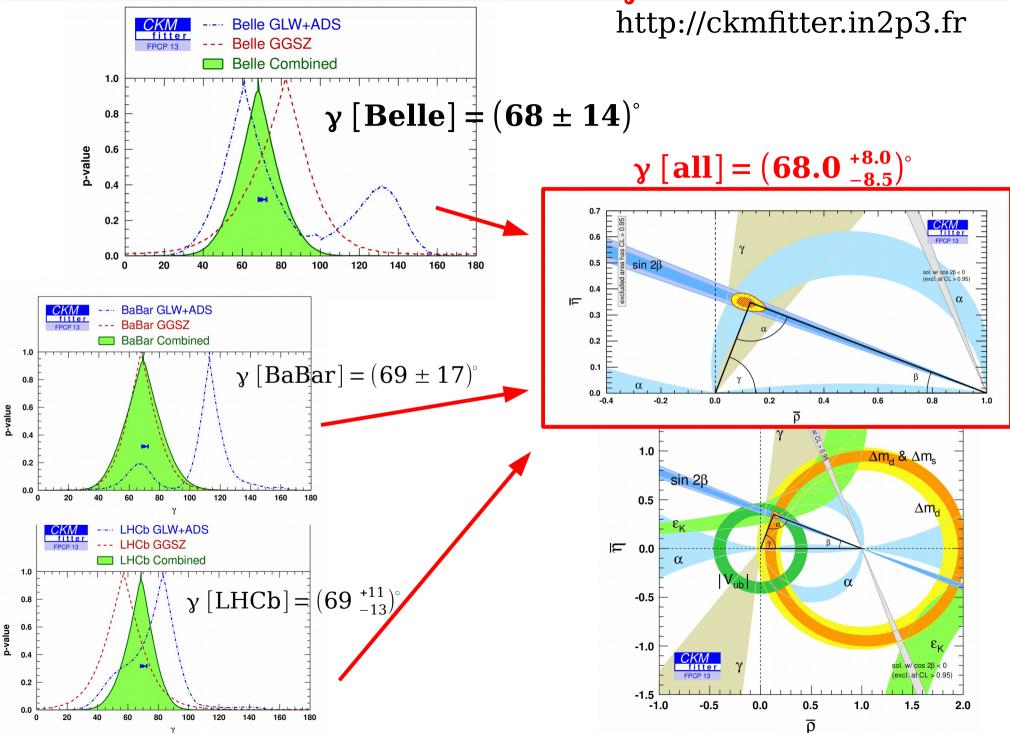
color suppressed $B^- \rightarrow \overline{D}^0 K^- \sim V_{ub} V_{cs}^*$

 $\sim A \lambda^3 (\rho + i \eta)$



long way to go ... ($\stackrel{\mathsf{Year}}{\to} \sigma_{\mathsf{y}} = 1^{\circ} \text{ or less ?}$)

Combined measurements for y from all methods



Charm mixing in $D^0 \rightarrow K^+\pi^-$

The ratio R(t) of WS $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^+ \pi^- \pi^+$ to RS $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$ decay rates can be approximated (assuming |x|, $|y| \le 1$ and no CPV) by:

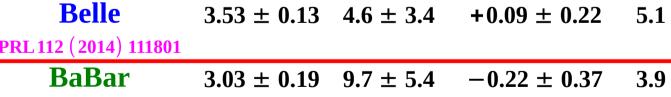
$$R(t) = R_{D} + \sqrt{R_{D}} y't + \frac{x'^{2} + y'^{2}}{4} t^{2}$$

$$= x \cos \delta + y \sin \delta \qquad \text{So a streng where differences}$$

$$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$$
$$y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$$

 $\delta_{K_{\pi}}$: strong phase difference btw DCS and CF amplitudes

Exp	$\mathbf{R}_{\mathbf{D}}$	\mathbf{y}	$\mathbf{x}^{'2}$	Σ
	(10^{-3})	$\left(10^{-3}\right)$	$\left(10^{-3}\right)$	



PRL 98 (2007) 211802

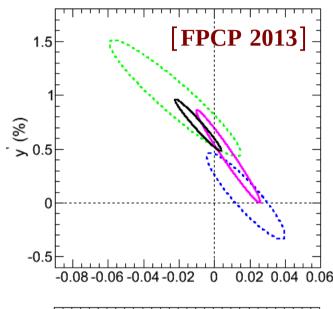
LHCb
$$3.57 \pm 0.07 + 4.8 \pm 1.0 + 0.055 \pm 0.049$$
 ? PRL 111 (2013) 251801

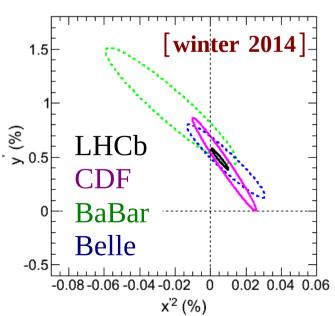
preliminary (2013)

 $3.51 \pm 0.35 \quad 4.3 \pm 4.3$

 $+0.08 \pm 0.18$

6.1





ADS observables

• (R_+, R_-) instead of (R_{ADS}, A_{ADS}) whenever available Effect of D- \overline{D} mixing on γ

- M.Rama, arXiv:1307.4384
- $\circ \ R^{\mp} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B}\mp\gamma + \delta_{D})$ $\rightarrow \ R^{\mp} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B}\mp\gamma + \delta_{D}) yr_{D}\cos\delta_{D} yr_{B}\cos(\delta_{B}\mp\gamma) + xr_{D}\sin\delta_{D} xr_{B}\sin(\delta_{B}\mp\gamma)$
- tried on the current LHCb average (DK): ~ 1 degree difference

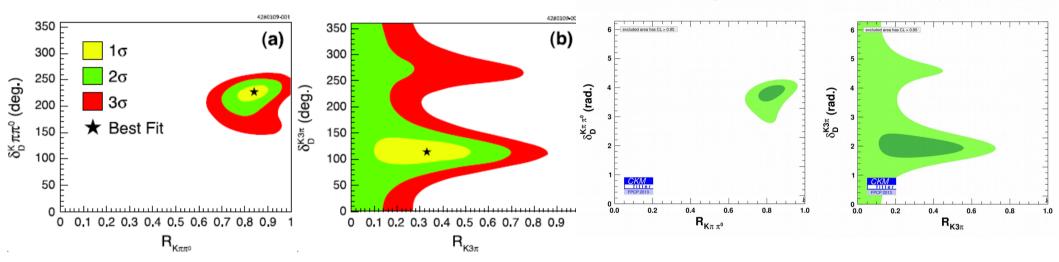
$K\pi\pi^0$, $K3\pi$ from CLEO-c

yields of double-tagged events where one meson decays into $K^-\pi^+\pi^0$ (or $K3\pi$), and the other meson decays into CP-odd, CP-even and $K\pi$

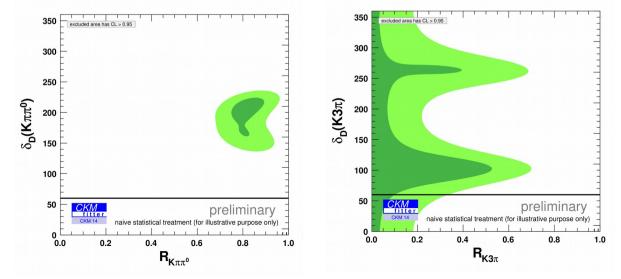
[arXiv:0903.4853, N.Lowrey et al]

(combined with external inputs: x, y, δ_{D} ...)

that we could reproduce earlier extending the charm fitter (+ Br's)



2014 version (currently used in our γ combination):

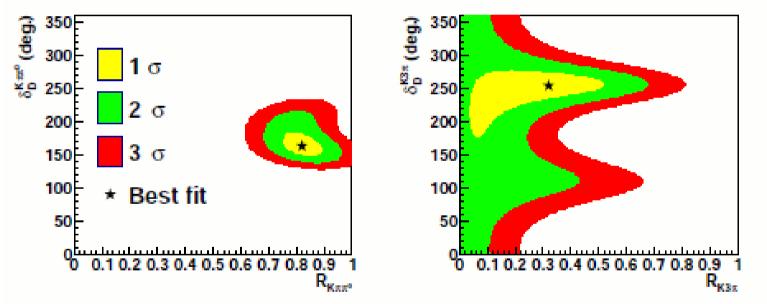


\mathbf{K} $\mathbf{\pi}$ $\mathbf{\pi}^{\mathbf{0}}$, \mathbf{K} $\mathbf{3}$ $\mathbf{\pi}$ from CLEO-c [J.Libby et al, arXiv:1401.1904]

yields of double-tagged events where one meson decays into $K^-\pi^+\pi^0$ (or $K3\pi$), and the other meson decays into $K_S^0\pi^+\pi^-$

$$Y_i = H_{K\pi\pi^0} \Big(K_i + (r_D^{K\pi\pi^0})^2 K_{-i} - \frac{2r_D^{K\pi\pi^0} \sqrt{K_i K_{-i}} R_{K\pi\pi^0} [c_i \cos \delta_D^{K\pi\pi^0} + s_i \sin \delta_D^{K\pi\pi^0}] \Big),$$
 measure by CLEO-c

K_i: fractional yield of D⁰ decays that fall into bin i



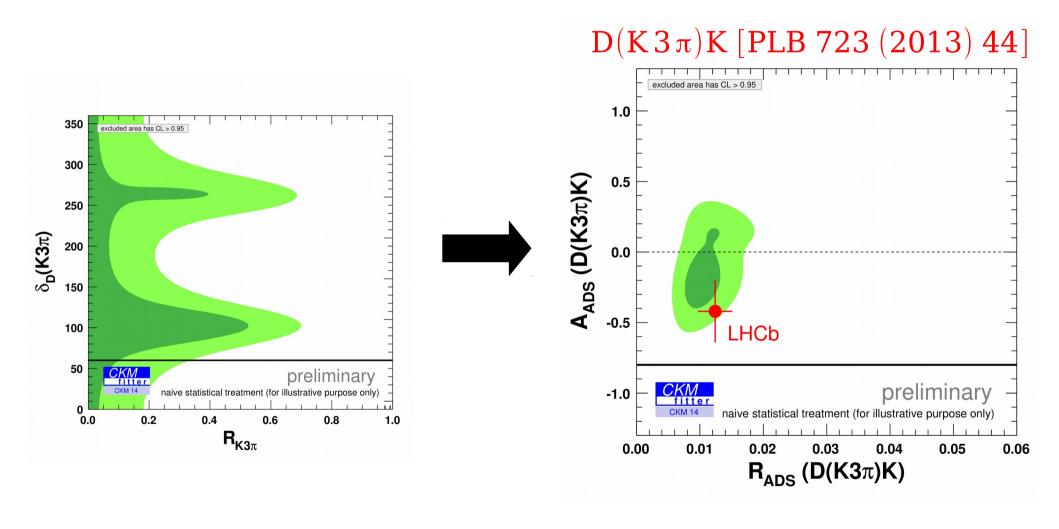
⇒ will soon include this information

$K3\pi$ charm information is limited:

- possible additional inputs from BES III
- B factories/LHCb[S.Harnew and J.Rademacker, arXiv:1309.0134]

ADS $B \rightarrow D(K3\pi)K$

where ''expectations'' derived from the GGSZ observables, δ_D , r_D and R (for K3 π)



 \Rightarrow D(K3 π)K LHCb result included in the γ combination

ADS $B \rightarrow D(K\pi\pi^0)K$

P

R. M

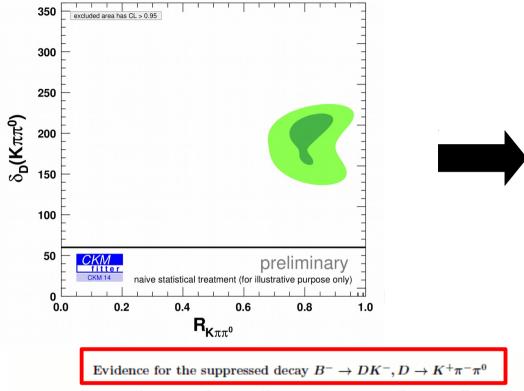
P. Pa

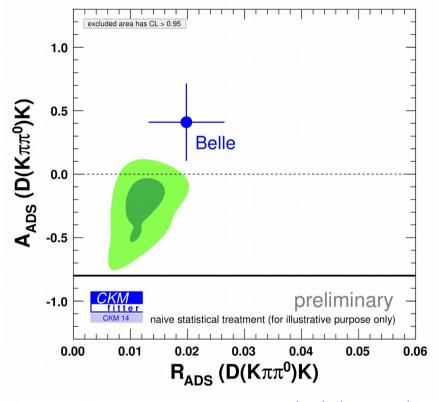
V. Sa

M. S

A. S

where ''expectations'' derived from the GGSZ observables, δ_D , r_D and R (for $K\pi\pi^0$)





M. Nayak, ¹⁶ J. Libby, ¹⁶ K. Trabelsi, ¹² I. Adachi, ¹² H. Aihara, ⁵⁵ D. M. Asner, ⁴² T. Aushev, ²⁰ A. M. Bakich, ⁴⁹ A. Bala, ⁴³ P. Behera, ¹⁶ K. Belous, ¹⁸ V. Bhardwaj, ³⁴ G. Bonvicini, ⁶⁰ A. Bozek, ³⁸ M. Bračko, ²⁷, ²¹ T. E. Browder, ¹¹ D. Červenkov, ⁵ M.-C. Chang, ⁸ P. Chang, ³⁷ V. Chekelian, ²⁸ A. Chen, ³⁵ B. G. Cheon, ¹⁰ R. Chistov, ²⁰ I.-S. Cho, ⁶² K. Cho, ²⁴ V. Chobanova, ²⁸ Y. Choi, ⁴⁸ D. Cinabro, ⁶⁰ J. Dalseno, ²⁸, ⁵¹ M. Danilov, ²⁰, ³⁰ Z. Doležal, ⁵ Z. Drásal, ⁵

DK [PRD 88, 091104(R) (2013)]

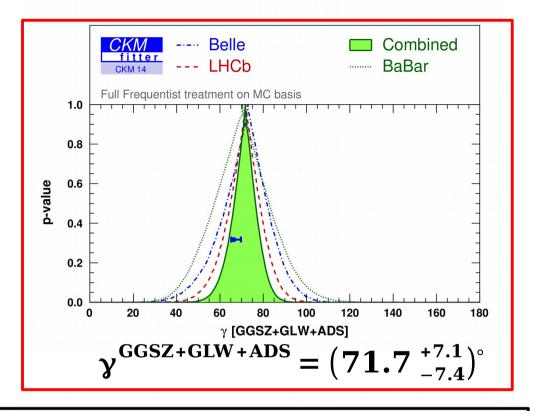
We report a study of the suppressed decay $B^- \to DK^-, D \to K^+\pi^-\pi^0$, where D denotes either a D^0 or a \overline{D}^0 meson. The decay is sensitive to the CP-violating parameter ϕ_3 . Using a data sample of 772×10^6 $B\overline{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector, we measure the ratio of branching fractions of the above suppressed decay to the favored decay $B^- \to DK^-, D \to K^-\pi^+\pi^0$. Our result is $R_{DK} = [1.98 \pm 0.62 ({\rm stat.}) \pm 0.24 ({\rm syst.})] \times 10^{-2}$, which indicates the first evidence of the signal for this suppressed decay with a significance of 3.2 standard deviations. We measure the direct CP asymmetry between the suppressed B^- and B^+ decays to be $A_{DK} = 0.41 \pm 0.30 ({\rm stat.}) \pm 0.05 ({\rm syst.})$. We also report measurements for the analogous quantities $R_{D\pi}$ and $A_{D\pi}$ for the decay $B^- \to D\pi^-$, $D \to K^+\pi^-\pi^0$.

G. Varner, ¹¹ K. E. Varvell, ⁴⁹ M. N. Wagner, ⁹ C. H. Wang, ³⁶ M.-Z. Wang, ³⁷ Y. Watanabe, ²² K. M. Williams, ⁵⁹ F. Wong, ²⁵ V. Varnashita, ³⁹ S. Vashchonko, ⁷ V. Varna, ⁴⁰ V. Zhilloh, ⁴ W. Zhulanov, ⁴ Ond. A. Zunane, ²³

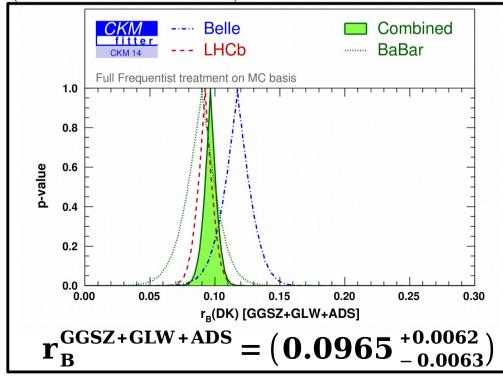
 $\overset{\text{E. Won,}^{25}}{\Rightarrow}\overset{\text{Y. Yamashita,}^{39}}{\text{Belle}}(\overset{\text{S. Yashchenko}}{\text{and}}\overset{\text{Y. Yusa,}^{40}}{\text{Ba}}\overset{\text{V. Zhillanov,}^{40}}{\text{nd}}\overset{\text{N. Zhullanov,}^{40}}{\text{nd}}\overset{\text{N. Zhullanov,}^{40}}{\text{N. Tessults included in the }}\chi \text{ combination}$

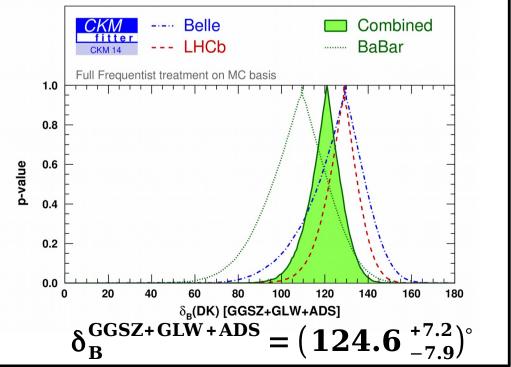
GGSZ+GLW+ADS

+20 obs.



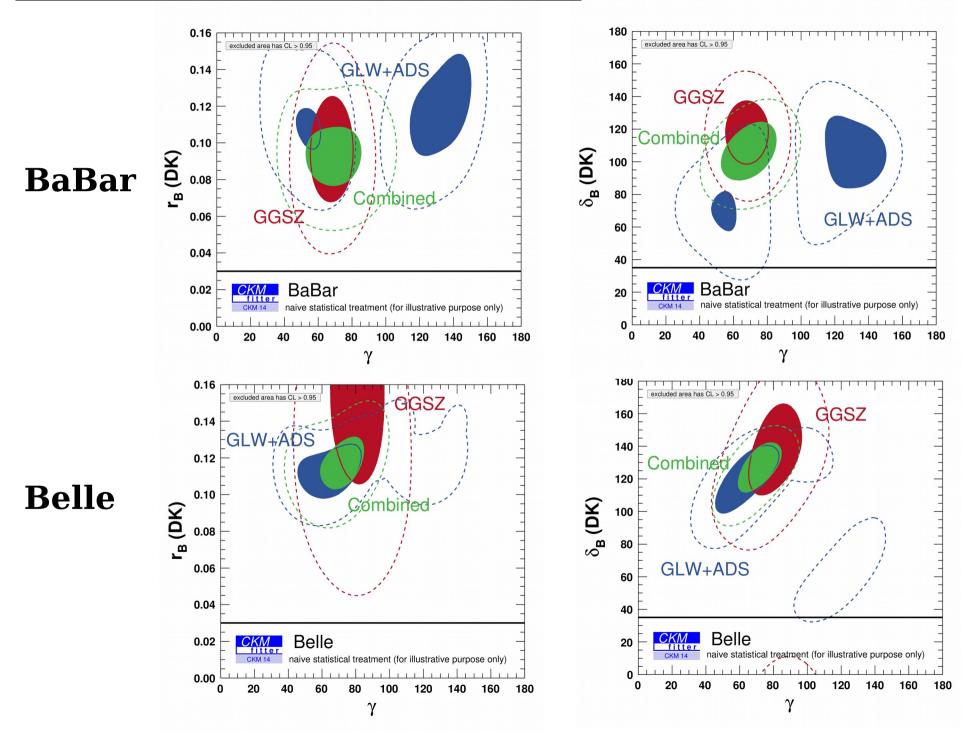
(results for DK)



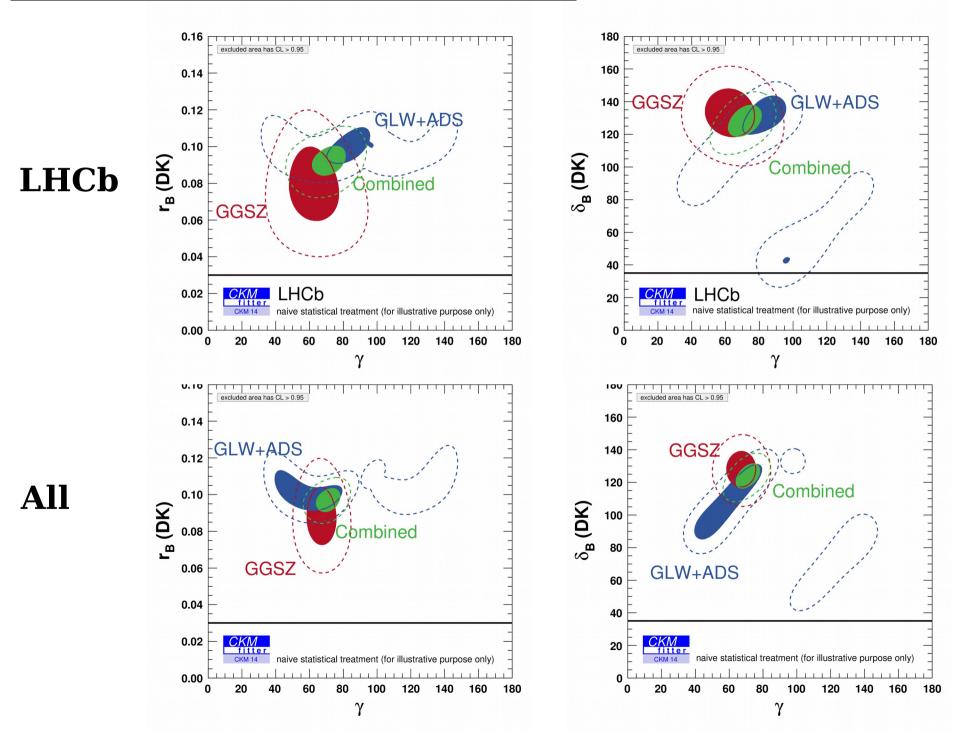


GGSZ versus GLW+ADS

 $(\mathbf{r}_{\mathbf{B}}(\mathbf{D}\mathbf{K}) \mathbf{vs} \boldsymbol{\gamma}, \delta_{\mathbf{B}}(\mathbf{D}\mathbf{K}) \mathbf{vs} \boldsymbol{\gamma})$



GGSZ versus GLW+ADS $(r_B(DK) \text{ vs } \gamma, \delta_B(DK) \text{ vs } \gamma)$



The small r_B issue

clearly in the $r_B \rightarrow 0$ limit the interference disappears and there is no sensitivity to the phase γ

when the true value of r_B is small, then the distribution of $\hat{r_B}$ best fit values for randomly generated data is biased towards larger values, until the experimental errors are sufficiently small to exclude the $r_B \sim 0$ region

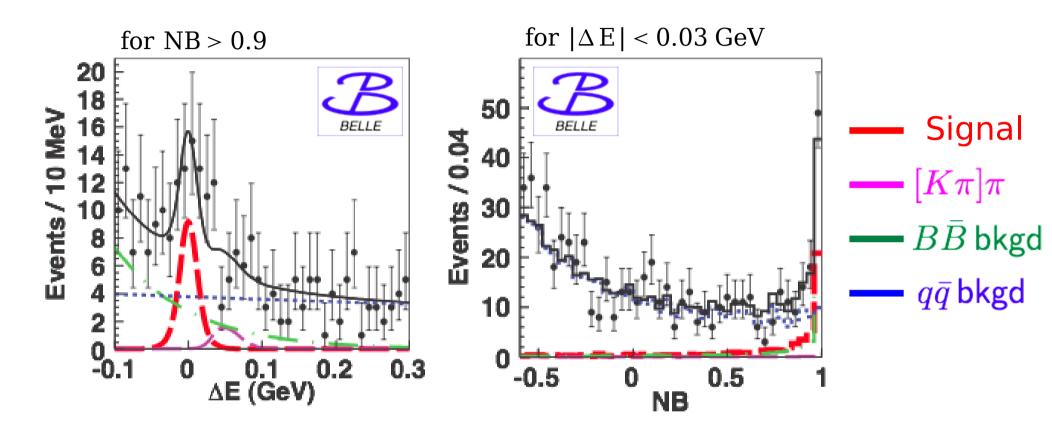
on the other hand the error on γ is roughly proportional to $1/r_B$, hence for small r_B it is biased towards smaller values

in the language of frequentist statistics it means that the usual $\Delta \ln \mathcal{L} = 1/2$ rule does not work here, the 68%CL interval extracted from it does not cover the true value of γ at 68% frequency (undercoverage)

to correct for this effect one has to compute the actual distribution of the profile log-likelihood, and from that distribution deduce a p-value or a CL interval

problem: as soon as the log-likelihood is not distributed as a χ^2 , its distribution a priori depends on the nuisance parameters, namely r_B , δ_B etc.

PRL 106, 231803 (2011)



 $56.0^{+15.1}_{-14.2}$ events

$$\mathbf{R}_{\mathrm{DK}} = (\mathbf{1.63}^{+0.44}_{-0.41}^{+0.07}) \times \mathbf{10}^{-2}$$

$$A_{\rm DK} = -0.39^{+0.26}_{-0.28}^{+0.04}_{-0.03}$$

First evidence obtained with a significance of 4.1σ (including syst.)