

Belle II status and Physics prospects

Chiara La Licata (Kavli IMPU WPI) for the Belle II Collaboration

ALPS 2019, Obergurgl, April 24 2019

Achievements at B factories

10 successful years: significant contribution to the understanding of the flavour dynamics in the Standard Model

- Discovery of CP violation in B meson transitions and confirmation of the CKM description of flavour physics
- Precision measurement of the CKM matrix elements and the angles of the unitarity triangle
- Constraints on various new physics models
- Observation of several new hadronic states
- Strong evidence of D meson mixing

keys of success:

- large data sample
- clean event structure

- asymmetric beam energy
- excellent detector performances

Next generation B factory: SuperKEKB

Asymmetric e+ e- circular collider aiming at delivering the highest instantaneous luminosity ever reached

- B factory (e+e--> Y(4S) -> BB)
- ~ 900 BB pairs/second at design intensity
- Charm factory
 - ~1.3 x 109 cc pairs per ab-1
- τ factory
 - ~0.9 x 109 $\tau\tau$ pairs per ab⁻¹

How to increase luminosity?

- Increase current: x2
- Reduced beam spot size (nano beam scheme): x20

$$L = \frac{\gamma_{\pm}}{2 \, er_{e}} (1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}}) \underbrace{\frac{I_{\pm} \xi_{y\pm}}{I_{\pm} \xi_{y\pm}}}_{\substack{beam current}} \frac{R_{L}}{R_{\xi_{y}}}$$
vertical beta function at IP

L_{peak}: 8x10³⁵ cm⁻²s⁻¹ (40 x KEKB)

L_{int}: 50ab⁻¹ by 2025 (50 x KEKB)

BELLE II detector

Many upgrades to increase the performance and cope with more severe background conditions

Vertex Detector

- 2 pixel layers
- 4 layers of double-sided silicon microstrip sensors
- →Extended region

Central drift chamber

- Small cell size, longer lever arm

EM calorimeter

- upgrade of electronics
- CsI(TI) crystals (high light output, short X₀)

K_L and muon detector

-some RPCs layers substituted with scintillators

Particle identification

- time of propagation counter (barrel)
- Prox. focusing Aerogel RICH (forward)
 fake rate >2 lower than in Belle

Timeline

- Full Belle II⁵detector. Physics run.

The first Belle II results

Charm and Beauty rediscovery

CKM UT triangle

Very broad program of research spanning B, charm and T physics, but also QED/QCD, quarkonium, light new physics direct searches etc.

Dark sector coverd by Torben Ferber

CPV in B decays precision measurement through tree modes, NP search in B-B mixing

CKM sides:

$$B \rightarrow D^{(*)}lv$$
, πlv , τv , μv

CKM angles:

$$\alpha/\varphi_2$$
: $B \rightarrow \pi\pi$, $B \rightarrow \rho\rho$

$$\beta/\varphi_1$$
: B \rightarrow J/ ψ Ks

$$\gamma/\varphi 3: B \rightarrow D^{(*)} K^{(*)}$$

Observables	Expected the. accu-	Expected	Facility (2025)
	racy	exp. uncertainty	
UT angles & sides			
ϕ_1 [$^{\circ}$]	***	0.4	Belle II
ϕ_2 [$^{\circ}$]	**	1.0	Belle II
ϕ_3 [°]	***	1.0	LHCb/Belle II
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb

Time-dependent CP Violation

Key aspects:

- flavour tagger: $\varepsilon_{\rm EFF}$ = 35.84% ($\varepsilon_{\rm FFF}$ BELLE = 30.04%)
- Δt resolution -> vertex fitting

Time-dependent rate asymmetry of B meson decays into CP eigenstates

$$a_{f_{CP}}(\Delta t) = \frac{\Gamma[B(\Delta t)] - \Gamma[\bar{B}(\Delta t)]}{\Gamma[B(\Delta t)] + \Gamma[\bar{B}(\Delta t)]} =$$

$$= C \cos(\Delta M \Delta t) + S \sin(\Delta M \Delta t)$$

C = direct CPV

 $S = sin(2\phi_i^{eff})$ mixing induced CPV

Searches for deviation from SM predictions.

The C and S are sensitive to NP

B→*φ*K_s as an example for b→sqq̄

R(D(*)) anomaly

lepton universality test

$$R(D^{(*)}) = \frac{Br(B \rightarrow D^{(*)} \tau v)}{Br(B \rightarrow D^{(*)} | v)}$$

$$I = e, \mu$$

Measurements from BABAR, Belle and LHCb all independently deviate from SM (combined ~3.1σ with the last Belle update)

$$R_{D(*)}^{SM}$$
 = 0.258 \pm 0.005, R_D^{SM} = 0.299 \pm 0.003

	5 ab^{-1}	50 ab^{-1}
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
		1808.10567

partial cancellation of theoretical uncertainties related to hadronic effects and measurements systematics

R(K(*)) anomaly

R(K(*)) =
$$\frac{Br(B \to K^{(*)} \mu^{+} \mu^{-})}{Br(B \to K^{(*)} e^{+}e^{-})}$$

LHCb measurements in tension with SM expectations for ratio of muon and electronic final states

$$R_K = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}$$

Consistent with SM at 2.52 σ

accuracy better than ~10% with 10 ab⁻¹ collected by Belle II

Summary

- During Phase 2 accelerator commissioning run (March July 2018)
 Belle II collected its first data sample.
- Peak luminosity of 5.5x10³³ cm⁻²s⁻¹ and ~0.5 fb⁻¹ integrated
- Understanding of the machine backgrounds
- Data sample permits validation of detector performance, exercising of physics tools
- "Rediscovery" heavy flavor: charm and beauty
- Physics run already started in March 2019

Plausible scenario: 10fb⁻¹ integrated from March to June 2019. Variations on the integrated luminosity depending on the machine and detector performance.

backup

Early phase 3 program

Plausible scenario: 10fb-1 integrated from March to June 2019. Variations on the integrated luminosity depending from the on machine and detector performance.

Semileptonic

- B → π I v and ρ I v untagged (CLEO saw a signal with 2.66 fb⁻¹)

Time Dependent CP Violation/Charm

- D lifetimes (2 fb⁻¹)
- Doubly Cabibbo suppressed D⁰ \rightarrow K⁺ π ⁻, D⁰ \rightarrow K⁺ π ⁻ π ⁰ (10 fb⁻¹)
- B lifetimes (2-10 fb⁻¹)
- Time dependent B mixing (10 fb⁻¹)

Radiative/Electroweak Penguins

- B→K* γ (b→s) (2 fb-1) rediscover penguins
- B→Xs γ (b→s) (~10 fb⁻¹ depending on off-resonance data taking)

Hadronic B decays (not time dependent)

- B→K π (b→u) (10 fb⁻¹)
- $B \rightarrow \Phi K (b \rightarrow s) (10 \text{ fb}^{-1})$
- B→J/ψ K (with more significance 2-10 fb⁻¹)

++ Dark Sector Physics Publications

Full event reconstruction

First studies of performance the hadronic tagging in Belle II data

- FEI (Full event interpretation) technique based on boosted decisions trees
- It allows the reconstruction of exclusive B-tag mesons candidates from over than 100 decay channels
- Essential analysis technique to study final states with single or multiple neutrinos. It recovers missing kinematic information

