The Belle II experiment: status and prospects

Martin Bessner University of Hawaii On behalf of the Belle II collaboration

MENU 2019 Pittsburgh, June 6, 2019

Belle II physics

Electron-positron collisions at 10 GeV "Intensity frontier"

- CKM matrix elements
- New sources of CP violation
- Lepton flavor violation
- Bottomonium spectroscopy
- Charmonium spectroscopy
- Tetraquarks/pentaquarks
- Dark sector physics

• ...

See dedicated talk by Toru Iijima (Tuesday plenary)

B-factories

- B-meson system crucial in flavor physics
- How can we produce them?
 - → In hadron collisions (e.g. LHC)
 - → In electron-positron collisions

- Asymmetric energies boost B mesons (→ measure lifetime)
- Energy scan: other Y states, B_s, ...
- Also produced: charmonium, charm, τ, ...

B-factories

• LHC: B mesons at >1 MHz Why do we need a B-factory?

- Hadron colliders:
 - many B mesons, but large backgrounds
- Electron-positron colliders:
 - individual collisions no underlying event
 - competitive with <0.1% B mesons
- Belle (1999-2010), BaBar (1999-2008)
- Belle II will go way beyond that

See dedicated talk by Toru lijima (Tuesday plenary)

SuperKEKB

Collision scheme

- Higher luminosity
- Larger crossing angle, narrow collision region
- Leads to new sources of background (discussed later)

Belle II Collaboration

- Grown a lot in the last years
- ~1000 members in 26 countries
- https://www.belle2.org/

Belle II

- Detector for SuperKEKB
- Major upgrade from Belle

More precision, 30 kHz trigger rate, larger tracking detector

Vertexing

- Bottom/charm hadrons short-living
- Need to reconstruct decay vertices
- Boost reduced from Belle

2 layers of pixel detector (PXD)

• 4 layers double-sided strip detector (SVD)

Tracking

- 2 layers of pixel detector
- 4 layers of double-sided strip detector
- Drift chamber for main tracking (CDC)
 Many hits, long lever arm (1.1 m)
- In 1.5 T magnetic field

Drift chamber

Charged particle identification

- Aerogel RICH (ARICH) detector in forward side
- Proximity focusing (2 radiators)
- Directly measure Cherenkov angle

Fig. 7. The concept of the ARICH.

Charged particle identification

100 mm

450 mm

2600 mm

Larger drift chamber → tight space for PID

• Use Time Of Propagation (TOP) of Cherenkov light

Total internal reflection

Particle identification in 2 cm

Outer detectors

 Electromagnetic calorimeter (ECL) taken from Belle Scintillators

New readout electronics

For direct photons, π^0 , e

1.5 T superconducting solenoid

Flux return and detection of K₁ and μ (KLM)

Resistive plate chambers

Scintillators

Timeline

- Phase 1: Accelerator commissioning
- Roll-in of detector
- Phase 2: Detector commissioning
- Installation of VXD
- Phase 3: Physics data-taking

Phase 1: accelerator

- Accelerator commissioning (no collisions)
- Beast II measured backgrounds
- Seven detector types: injection backgrounds, ionizing radiation, fast/thermal neutrons, ...

positrons

electrons

Phase 1: detector assembly

Here: TOP installation

Detector roll-in

April 11, 2017

Phase 2: First collisions

April 26, 2018

BB event candidate

Control room

Accelerator tuning

21/30

Particle re-discovery

Particle re-discovery

Particle identification from tracking dE/dx, ARICH and TOP

Calibration still ongoing

$$\phi \to K^+K^-$$

VXD installation

VXD installed 2018/2019
Only 1 pixel layer completed in time
Second layer to be installed later

1/2 of VXD

Phase 3

March 24, 2019

Phase 3 schedule

- First collisions in March
- April: Soot in accelerator (from unrelated fire), no beam
- Collecting data May-June
- Plan: Running 7-9 months/year with summer shutdowns second pixel layer, replace aging parts, ...
- Challenge: Accelerator backgrounds

Accelerator backgrounds

Collisions are clean, but...

- Intra-beam scattering (Touschek effect) scales with 1/emittance
- Beam-gas scattering
- Beam/beam interaction
- Synchrotron radiation

Accelerator backgrounds

- Much higher than in Belle
- Challenge for:

Trigger

Readout

Tracking

CDC HV

TOP PMT lifetime

Mitigation:
 higher e+ energy
 vacuum scrubbing
 collimator tuning

Outlook

 10^{-2}

10⁻³

- First few fb-1 collected
- ~20 fb⁻¹ enough for competitive results
- Long-term goal: 50 ab-1.
- Mainly Y(4s) but also other energies

Summary

- B-factories: Tools for flavor/hadron physics, dark sector searches
- Belle II: More data than Belle, improved detector
- Commissioning run in 2018
- Regular data-taking since March 2019
- Major challenge: Backgrounds
- 50 ab⁻¹
- ~50 billion BB pairs
- Improved precision over Belle
- Many new measurements

Stay tuned!

Backup slides

Belle II vs. Belle

Comparison: Belle timeline

Hua YE, "Belle & Belle II Activities", 2016

