Dark sector physics with Belle II.

Sam Cunliffe EPS HEP, Ghent, 11.07.2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Belle II

SuperKEKB

- Reason for the second iteration of the project: upgraded accelerator.
- A factor 40 increase in instantaneous luminosity
 ×2 from upgraded ring (higher beam current)
 ×20 β* from final focus magnets.

positron ring

electron ring

collision point

Belle-II detector

Final focus magnets

February 2018

Data taking this year

Data schedule

- Last year: 500 pb⁻¹.
 - Commissioning data.
- This year:
 ~6.5 fb⁻¹ delivered.
- Lifetime data set:
 50 ab⁻¹.

Tracking and clustering

Radiative dimuon events in first data

Dark matter

Dark matter

- It's dark.
- It exists...

Dark sector

Axion-like particle

Theory

• After EWSB, four terms:

$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} aF_{\mu\nu}\tilde{F}^{\mu\nu} - \frac{g_{a\gamma Z}}{4} aF_{\mu\nu}\tilde{Z}^{\mu\nu} -\frac{g_{aZZ}}{4} aZ_{\mu\nu}\tilde{Z}^{\mu\nu} - \frac{g_{aWW}}{4} aW_{\mu\nu}\tilde{W}^{\mu\nu}$$

JHEP 1712 (2017) 094

ALP-strahlung

Axion-like particle

Theory

• After EWSB, four terms:

Photon fusion

JHEP 1712 (2017) 094

ALP-strahlung

ALPs @ Belle II

3γ analysis

- ALP-strahlung is much easier experimentally.
 - Do this first.
- Three photons within tracking acceptance: add up to beam energy.
 - Zero tracks.
 - Bump on di-photon mass.
- The SM background: $ee \rightarrow \gamma\gamma(\gamma)$
 - Does not peak in γγ.
 - Not a 2-body system: use angles & kinematics to suppress.

Theory

Massive vector particle A', mixes with the SM photon:

 $\mathcal{L} \supset \epsilon g_D A'_\mu J^\mu_{\rm EM}$

- Can decay directly to dark matter final state. Experimentally invisible A' $\rightarrow \chi_1 \chi_2$
- Can decay to two leptons $A' \rightarrow I^+I^-$
- Experimentalist's trick: require ISR photon.

$$E_{\gamma_{\rm ISR}} = \frac{s - m_{A'}^2}{2\sqrt{s}}$$

Analysis

- First analysis: $ee \rightarrow \gamma A' \rightarrow \gamma(\chi_1 \chi_2)$
- One photon. (no tracks, other good photon clusters).
 - Bump search in recoil mass spectrum.
- Backgrounds
 - Cosmics
 - Beam interactions
 - ► ee \rightarrow ee $\gamma(\gamma)$
 - ► ee $\rightarrow \gamma\gamma(\gamma)$

Z'

- "Dark photon" \rightarrow Z' if non minimal.
- Mediator coupling to muons and taus, not electrons (L_µ - L₁)
- ee $\rightarrow \mu\mu Z'$ (Z' \rightarrow invisible)
- Bump hunt in recoil mass against µµ. Nothing in the rest of the event.

Summary

- Next generation e⁺e⁻ collider. Belle II taking data now.
- Dark sector physics \rightarrow good prospects even with very early data.
- 3γ: ALP-strahlung and decaying to two photons.
 - Experimentally clean.
 - Can perform analysis with *calibration* collisions data (~500 pb⁻¹ 2018).
- **Single γ**: dark photon decaying to stable dark matter.
 - Can improve limits from BaBar with 20 fb⁻¹.
- $\mu\mu Z'$: L_u L_t dark vector decaying to stable dark matter.
 - First analysis with early data.

Appendix

Page 26

DESY.

Contact

DESY. Deutsches Elektronen-Synchrotron

Sam Cunliffe sam.cunliffe@desy.de orcid: 0000-0003-0167-8641

www.desy.de