

MICHEL BERTEMES

INVISIBLES19

DARK SECTOR WITH BELLE II

BELLE II AND SUPERKEKB

- located at IP of e+e- collider SuperKEKB in Tsukuba, Japan
- commissioning run from Feb to Jul 2018, regular operations started in Mar 2019
- operated at 10.58 GeV (= $m_{\Upsilon(4S)}$)
- design luminosity 8x10³⁵ cm⁻²s⁻¹
- rich physics program: B and D physics, quarkonium and low mass dark sector

→ collect 50 times more data than Belle

DARK PHOTON

- lacktriangle dark photon A' can couple to the SM photon via kinetic mixing parameter ϵ
- consider on-shell A' decays, different experimental signatures according to $m_{A'}$
 - if A' is the lightest DS particle, decay into SM, peak in invariant mass of decay products
 - if A' is not the lightest DS particle, decay into DM, mono-chromatic ISR photon

→ single photon trigger

DARK Z'

- extend SM by adding a U(1)' group
- new massive gauge boson Z' coupled to L_{μ} $L_{ au}$ via g'
- focus on invisible Z' decay produced with pair of muons
- search for two muons with missing energy and bump in mass recoiling against two muons

ALPS

- axion-like particles are pseudoscalar bosons appearing in different extensions to the SM
- coupling and mass of ALPs are taken to be independent
- lacktriangleright simplest approach at Belle II is via two photon coupling $g_{a\gamma\gamma}$
 - ALP-fusion, dominates, high QED background
 - ALP-strahlung, most promising search channel

CONCLUSION

- Belle II: start of data taking, different low mass DS analysis
- Dark Photon: kinetic mixing with SM photon, single photon trigger, ECL hermeticity
- Dark Z': coupling to muons and tauons, bump in recoil mass, (g-2) anomaly
- ALPs: two photon coupling, different signatures according to mass and coupling

THANK YOU FOR YOUR ATTENTION!

BACKUP

DARK PHOTON

DARK PHOTON

different background contributions

ее→ееγ

both electrons out of tracking acceptance

ee→2γ 1γ in ECL BWD or FWD gap

ee→3γ1γ in ECL BWD gap
1γ out of ECL acceptance

ALPS

- select events with three ECL clusters with E>0.25 GeV and search for bump in 2 photon mass spectrum
- main backgrounds are $ee \rightarrow \gamma\gamma\gamma$, $ee \rightarrow \gamma\gamma$ and $\gamma \rightarrow ee$
- requires single photon trigger for long-lived ALPs

