

cLFV studies at Belle II

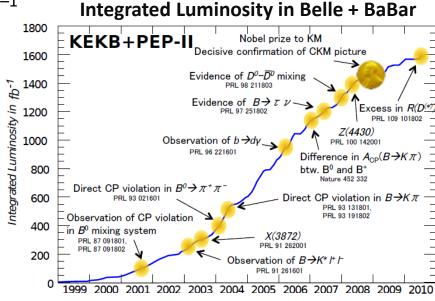
Outline

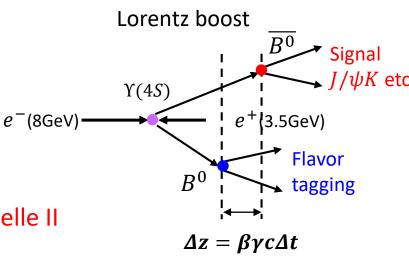
- Introduction
- Belle II status
- cLFV searches

Tomoyuki Konno

for the Belle II collaboration

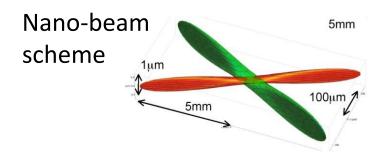
Kitasato University


19/06/2019, Fukuoka, Japan


Introduction

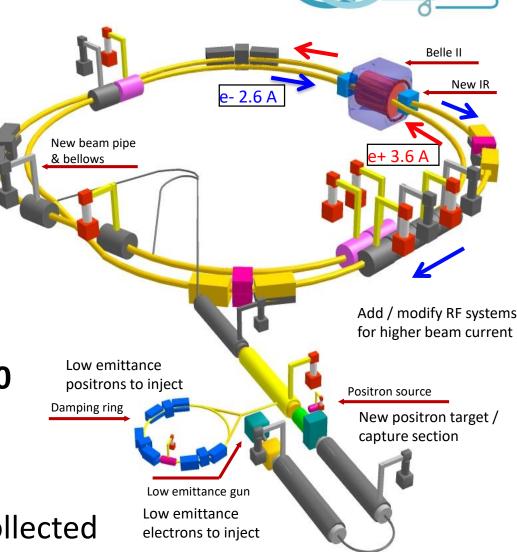
Motivation to Belle II

- **B factories (Belle / BaBar)** collected 1.5 ab⁻¹
 - Asymmetric energy: 3.5 / 8.0 GeV
- Many discoveries in the Standard Model
 - CKM mechanism of CP violation
- Next generation: Search for New Physics via precision measurements
- Advantages of a new B-Factory
 - Clean event topology
 - Full reconstruction/flavor tagging
 - Neutral particles in final state
 - Rich and clear Tau decays
 - Sensitive to NP mass ranges complemental with LHCb
 - => Sensitive to Lepton Flavor Violation

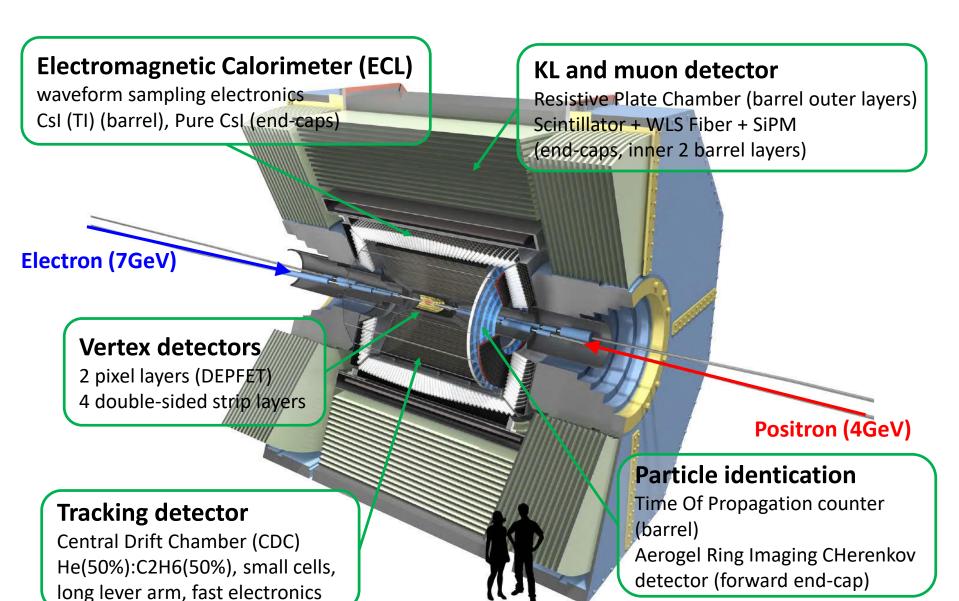

New Accelerator / Detector : SuperKEKB and Belle II

SuperKEKB / Belle II

KEKB is upgraded to SuperKEKB!


40 times higher luminosity

– Focus on small β^*_{y} : **x 20**


– Increase in current : x 2

=> Integrated 50 ab⁻¹

=> 4.6 x 10^{10} τ pairs will be collected

Belle II detector

History of Belle II

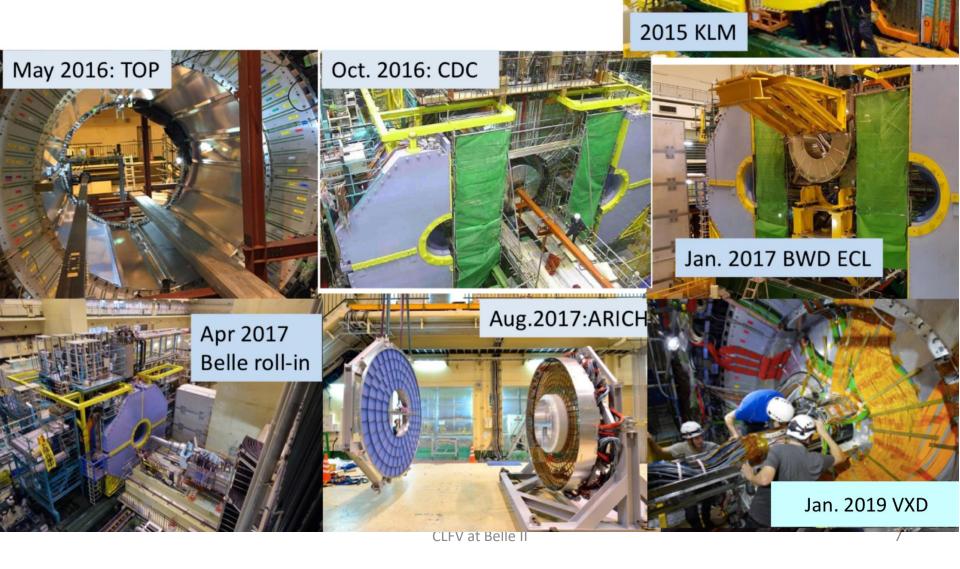
- KEKB stopped (2010)
- Phase 1 (2016)
 - SuperKEKB commissioning before collision
- Phase 2 (2018): Beam collision
 - SuperKEKB +Belle II commissioning
 - Belle II (w/o VXD)+ BEAST II (BG monitor)
- Phase 3 (2019-): Physics run
 - Full Belle II (w/ VXD)
 - Search for new physics!

2004 LOI

KEKB stop (2010)

Phase 1 (2016)

Roll-In (2017)


Phase 2 (2018)

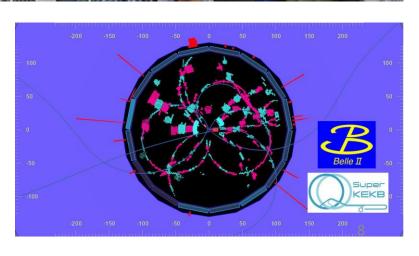
Phase 3 (2019)

New Physics?

6

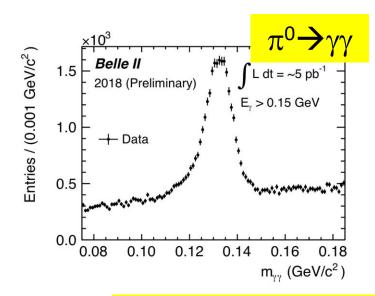
Belle II construction

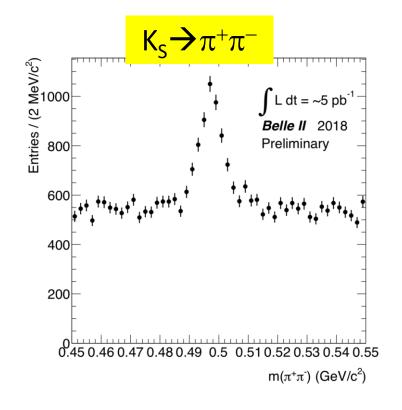
First Collision at Phase II run

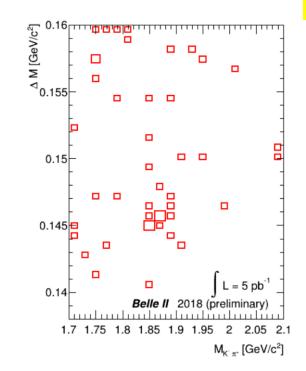


First collision at 26/04/2018

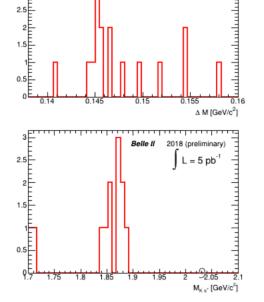
- 3 months operation until 18th July
- Almost full detector worked well

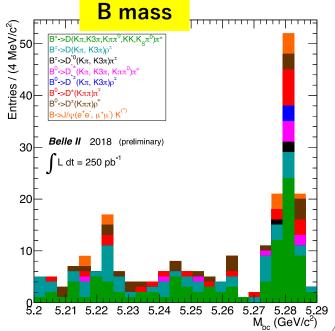

Integrated Luminosity: ~500 pb⁻¹



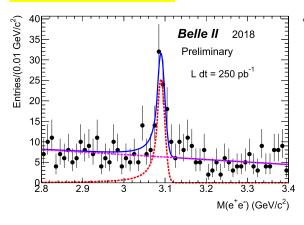

First plots

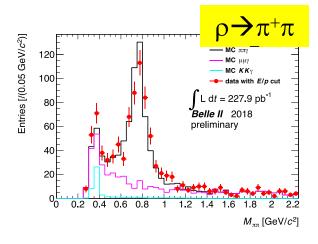
Rediscoveries in Phase II samples

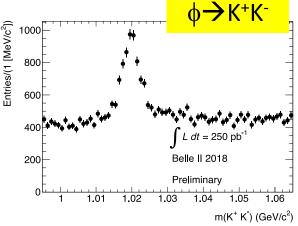

- Integrated Luminosity: ~5pb⁻¹
- Belle II is working nicely
- => Good Tracking, Clustering, PID

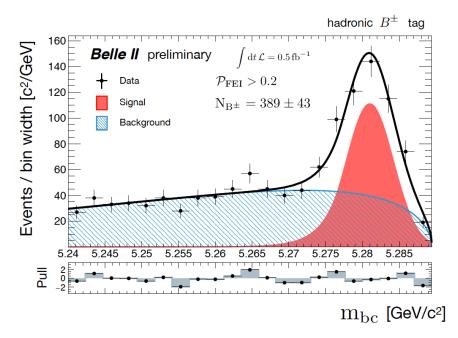


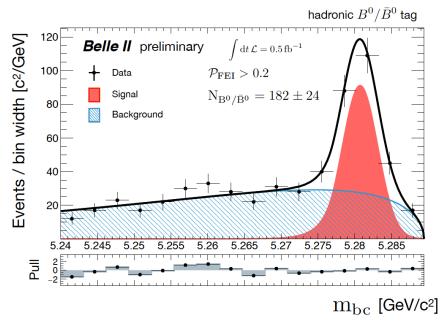
First plots


Rediscoveries in Phase II samples

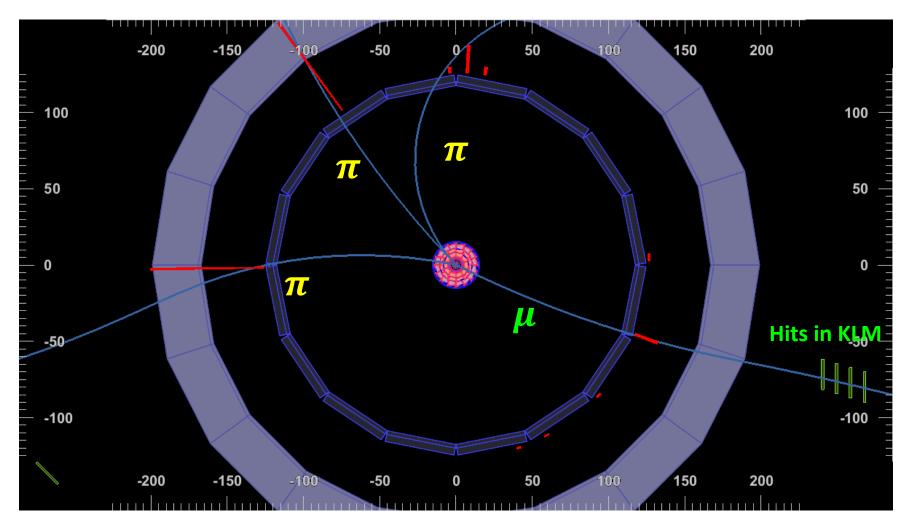

- Integrated Luminosity: ~5pb-1
- Belle II is working nicely
- => Good Tracking, Clustering, PID

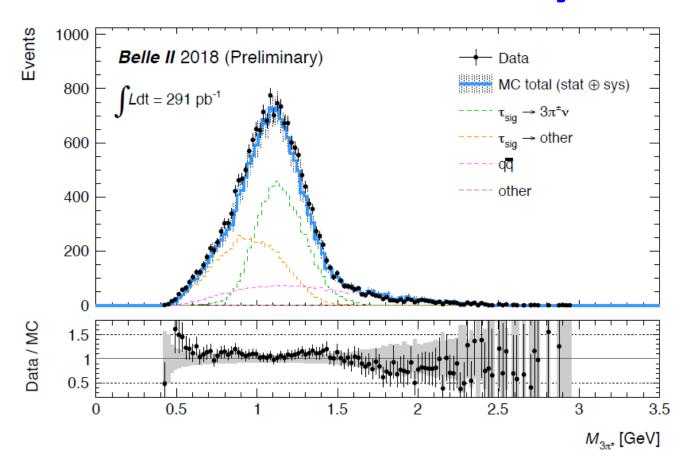

$$M_{bc} = \sqrt{(E_{CM})^2 - (\sum p_i)^2}$$


$J/\psi ightarrow e^+e^-$



Full event reconstruction for B tag

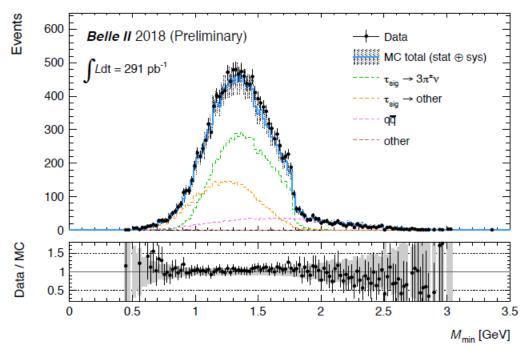



- ~571 (389+182) fully reconstructed B mesons
- Improvement of a factor of ~O(3.6) in overall efficiency
 Advanced analysis method covering more decay channels
 - The Full Event Interpretation arXiv:1807.08680

τ pair candidates with τ ->3 π ν

• τ pair are also extracted in the beam commissioning data

$\tau \rightarrow 3\pi v$ in Belle II early data

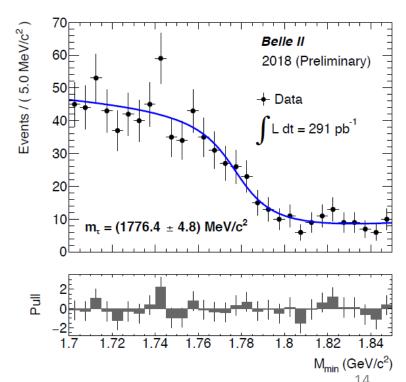

- Data has good agreement with MC after selection cuts
- Performance of the subsystems is enough as expected

CLFV at Belle II

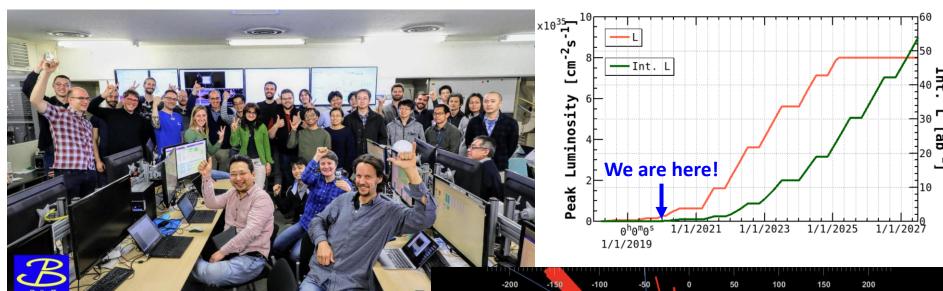
13

τ mass in Belle II early data

M_{min} distribution @ 291 pb-1:


 Tau mass from Belle early data is consistent to previous results

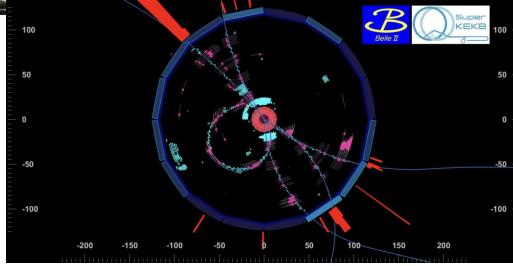
$$m_{\tau} = (1776.4 \pm 4.8 \text{ (stat)}) \text{ MeV/c2}$$


Measured in $\tau \rightarrow 3\pi v$

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$

Distribution of the pseudomass is fitted to a empirical edge curve

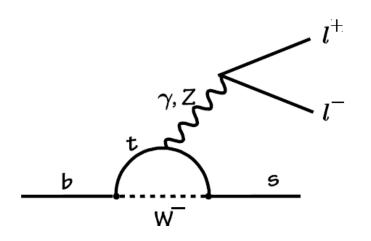
Phase III started for physics!

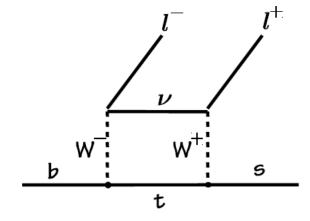


Restarted at 25th March with Full Belle II / SuperKEKB

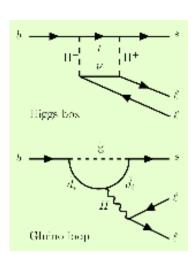
Peak Lumi. :4 x 10³³ cm⁻²s⁻¹

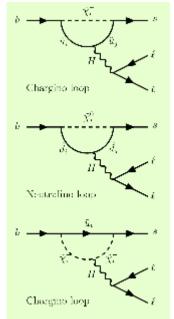
Int. Lumi: 3 fb⁻¹


=> Increasing Luminosity!

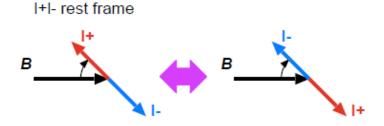


Channels to cLFV in Belle II


- A number of studies for charged Lepton Flavor Violation is carried out using (almost) full Belle data samples of 1ab⁻¹
 - b \rightarrow lls : LFV in B decays
 - $-\tau$ physics: tau decays from tau pair productions
- Both are very rare decay search and possible to investigate in B factory experiment thanks to clean signature
 - More statistics in Belle II will bring us to prediction in NP
- Review based on Belle results to prospect to Belle II

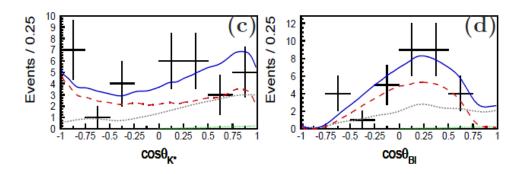

Flavor anomaly in $b \rightarrow sll$

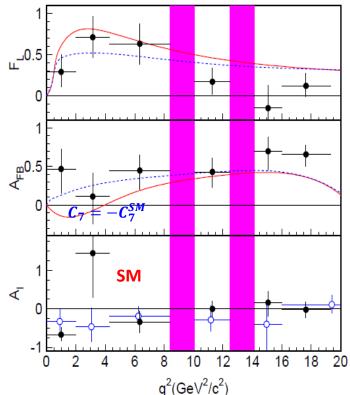
- $b \rightarrow s \gamma$ followed by $\gamma \rightarrow ll$
 - Added a box diagram
 - Rare decay in the SM
 - Sensitive to Supersymmetry2HDM, Fourth generation, ...
- => Nice place to look for new physics



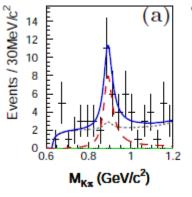
proceeding to LHCb

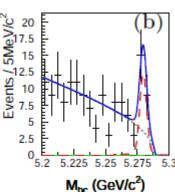
7 N L L


Forward-backward Asymmetry to parent B


$$\frac{d\overline{A}_{\rm FB}(q^2)}{dq^2} = \frac{N(q^2;\,\theta_{B\ell^+} > \theta_{B\ell^-}) - N(q^2;\,\theta_{B\ell^+} < \theta_{B\ell^-})}{N(q^2;\,\theta_{B\ell^+} > \theta_{B\ell^-}) + N(q^2;\,\theta_{B\ell^+} < \theta_{B\ell^-})}$$

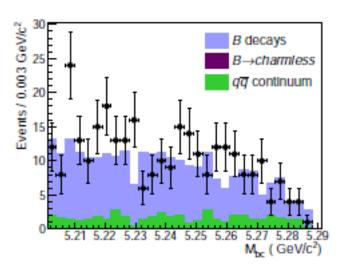
Measured Wilson coefficients

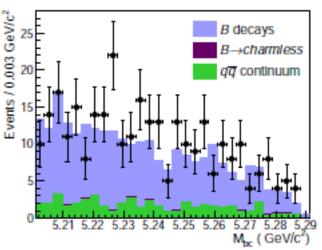

$$\frac{d\overline{A}_{FB}(q^2)}{dq^2} = -C_{10}\xi(q^2) \times \left[\text{Re}(C_9)F_1 + \frac{1}{q^2}C_7F_2 \right]$$


A deviation => Hints to New Physics?

PRL 103:171801,2009

$B \to K^* l^+ l^-$ sensitivity in Belle II


- Rich channels to probe not only LFV but LUV
- => Still difficult to measure the branching ratio preciously
- Belle II provides more precision measurements


PRL 103:171801,2009

$$R(K^*) = 0.83 \pm 0.17 \pm 0.08$$

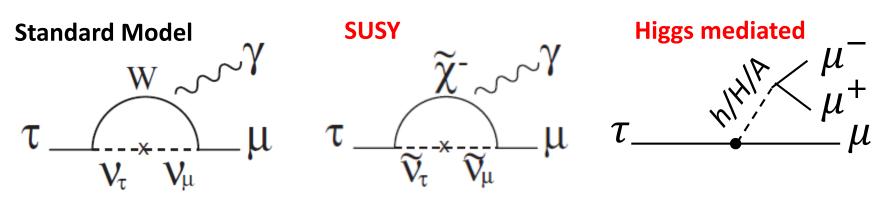
 $R(K) = 1.03 \pm 0.19 \pm 0.06$

Observables	Belle $0.71\mathrm{ab^{-1}}$	Belle II $5 \mathrm{ab^{-1}}$	Belle II 50 ab ⁻¹
$R_K ([1.0, 6.0] \text{GeV}^2)$	28%	11%	3.6%
$R_K \ (> 14.4 {\rm GeV^2})$	30%	12%	3.6%
R_{K^*} ([1.0, 6.0] GeV ²)	26%	10%	3.2%
$R_{K^*} \ (> 14.4 \mathrm{GeV^2})$	24%	9.2%	2.8%
R_{X_s} ([1.0, 6.0] GeV ²)	32%	12%	4.0%
$R_{X_s} \ (> 14.4 {\rm GeV^2})$	28%	11%	3.4%

LFV $K^*l^+l^-$ decays

[Belle, arXiv:1807.03267]

Mode	ε	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	$\mathcal{B}^{\mathrm{UL}}$
	(%)			(10^{-7})
$B^0 \to K^{*0} \mu^+ e^-$	8.8	$-1.5_{-4.1}^{+4.7}$	5.2	1.2
$B^0 \! \to \! K^{*0} \mu^- e^+$	9.3	$0.40^{+4.8}_{-4.5}$	7.4	1.6
$B^0 \to K^{*0} \mu^+ e^-$ $B^0 \to K^{*0} \mu^- e^+$ $B^0 \to K^{*0} \mu^{\pm} e^{\mp}$ (combined)	9.0	$-1.18^{+6.8}_{-6.2}$	8.0	1.8


Belle opened world best constraints of the LFV $K^*l^+l^-$ modes

$$\mathcal{B}(B^0 \to K^{*0} \mu^+ e^-) < 1.2 \times 10^{-7}$$

 $\mathcal{B}(B^0 \to K^{*0} \mu^- e^+) < 1.6 \times 10^{-7}$
 $\mathcal{B}(B^0 \to K^{*0} \mu^{\pm} e^{\mp}) < 1.8 \times 10^{-7}$

Belle II can reach 90% of UL at O(10⁻⁸) with 50 ab⁻¹

Search for tau LFV

- Lepton Flavor Violation (LFV) is highly suppressed in the Standard Model (SM) even if neutrino oscillation is taken
 - Br $< O(10^{-54}) =>$ Experimentally unreachable
- Many extensions to SM predict to enhance LFV to be observable in current experiment facilities: Br ~ O(10⁻⁸)
- => Observation of LFV is an clear signature of the New Physics (NP)!
- Tau lepton the heaviest charged lepton coupling to the NP
- => Many possible LFV decay modes related to the NP models

Predicted BF in various models

• Various models predict BF for $\tau \to \mu \gamma$ and $\tau \to \mu \mu \mu$

	Reference	$ au o \mu\gamma$	$ au o \mu\mu\mu$
SM+ ν mixing	EPJ C8 (1999) 513	< 10 ⁻⁵⁴	
SM + heavy Maj ν_R	PRD 66 (2002) 034008	10 -9	10-10
Non-universal Z'	PLB 547 (2002) 252	10 -9	10-8
SUSY SO(10)	PRD 68 (2003) 033012	10-8	10-10
mSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10-9
SUSY Higgs	PLB 566 (2003) 217	10 ⁻¹⁰	10-7

Numbers correspond to the most optimistic case

Super B factory will reach a possible region to τ LFV!

Predicted BF in various models

Ratio of Tau LFV decay BF provides discrimination of NP models

(M.Blanke, et al., JHEP 0705, 013(2007), C.Yue, et al., PLB547, 252 (2002))

	SUSY+GUT (SUSY+Seesaw)	Higgs mediated	Little Higgs	non-universal Z' boson
$\left(\frac{\tau \to \mu\mu\mu}{\tau \to \mu\gamma}\right)$	$\sim 2 \times 10^{-3}$	0.06~0.1	0.4~2.3	~16
$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	$\sim 1 \times 10^{-2}$	~1 × 10 ⁻²	0.3~1.6	~16
Br $(au o \mu \gamma)$	< 10 ⁻⁷	< 10 ⁻¹⁰	< 10 ⁻¹⁰	< 10 ⁻⁹

Favorite modes $\tau \to \mu \gamma$

- It is important to search for various kinds of τ LFV
- => Almost all decay modes were studied using the Belle data

Search for tau LFV in B factory

- Various interesting channels studied in B factories
 - => Pick up two modes in this talk

$$- \tau \rightarrow \ell \ell \ell$$

Possible to access in early Belle II

$$-\tau \to \ell K_{\rm S}$$
, Λh

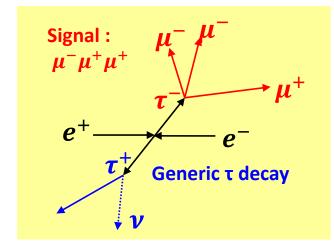
$$-\tau \to \ell V_0(\to hh')$$

$$-\tau \to \ell P^0 (\to \gamma \gamma)$$

$$-\tau \rightarrow \ell h h'$$

$$- \tau \rightarrow \ell \gamma$$

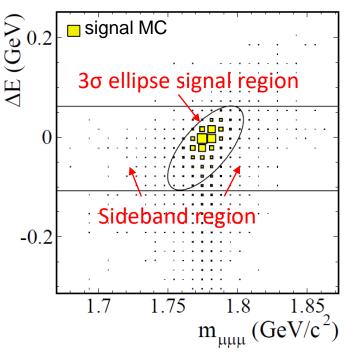
Sensitive to many NP models but More serious in BG in Belle II

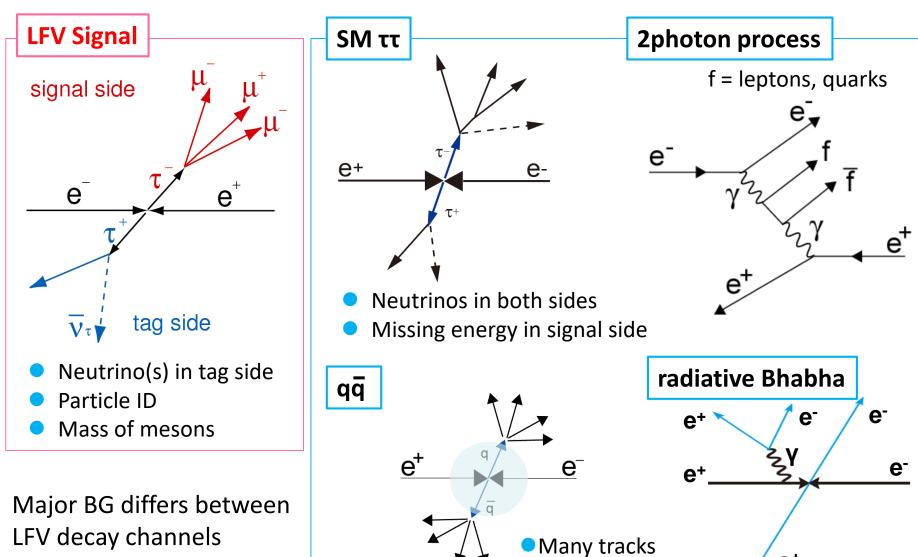

- Rare decay search:
 - => Understand backgrounds and reduce as much as possible
- Review Belle results proceeding to Belle II

Analysis procedure

• $e^+e^- \rightarrow \tau^+\tau^-$: No missing in signal side

| Signal side: $\mu\mu\mu$ - Fully reconstructed

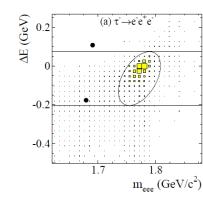

| Tag side: 1 prong + missing
- Br ~ 85 %

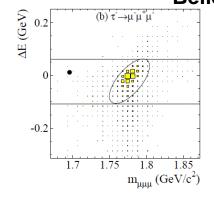

• Signal extraction: $m_{\mu\mu\mu} - \Delta E$ plane

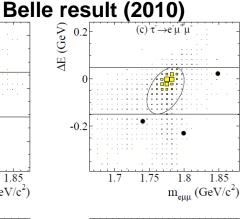
$$- m_{\mu\mu\mu} = \sqrt{E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2} \sim m_{\tau}$$
$$- \Delta E = E_{\mu\mu\mu}^{CM} - E_{beam}^{CM} \sim 0$$

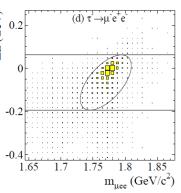
 Number of Background is estimated using sideband data and MC

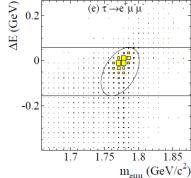
Signal and backgrounds



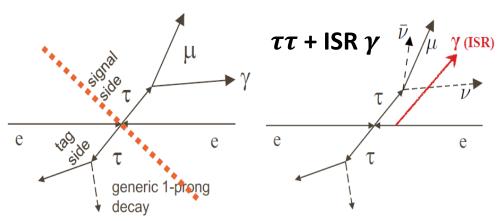

Belle result : $au o \ell\ell\ell$


Phys.Lett.B687,139 (2010)


- Data: 782fb⁻¹
- No event s are found in the signal region.
- Almost BG free!
 - Expected # of BG:0.01-0.21
 - => Emphasize the low background compared to LHCb

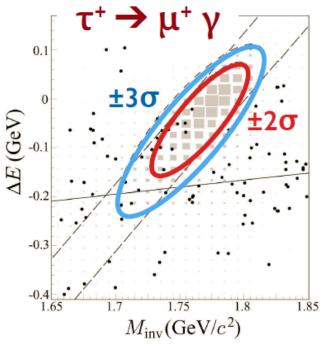

Br < $\sim 10^{-8}$ at 90%CL

Je v	0.2	F				((f)	τ	\rightarrow	μ	e	e		•		:			
) 									: :	:				:		1		•	
•	0	-				:	: :	/		Ö		:)		•		•			-
							(::		: :	/	/: ·		1		1			
	-0.2					:	::	: :		:									
	-0.4									:				•	- :		i		
		l.6:	5	1	.7		;:	7		<u>:</u>		.8		_		.8		_	ا
										n	lμ	ee	(G	e	V	/c	2)

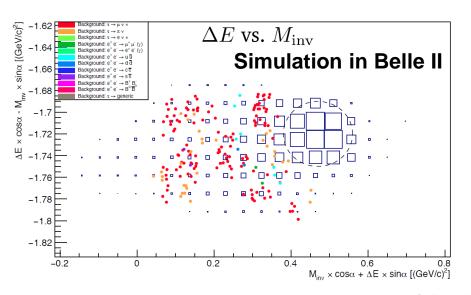

Mode	ε (%)	N _{BG} EXP	σ _{syst} (%)	UL (x10 ⁻⁸)
$e^-e^+e^-$	6.0	0.21 <u>±</u> 0.15	9.8	2.7
$\mu^-\mu^+\mu^-$	7.6	0.13±0.06	7.4	2.1
$e^-\mu^+\mu^-$	6.1	0.10±0.04	9.5	2.7
$\mu^-e^+e^-$	9.3	0.04 <u>±</u> 0.04	7.8	1.8
$\mu^-e^+\mu^-$	10.1	0.02 <u>±</u> 0.02	7.6	1.7
$e^-\mu^+e^-$	11.5	0.01 <u>±</u> 0.01	7.7	1.5

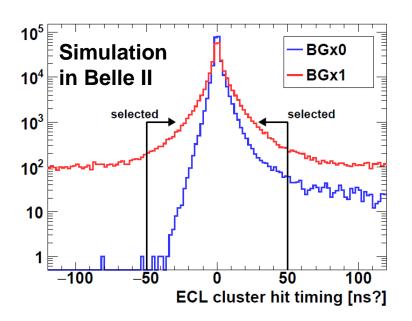
Belle result : $\tau \rightarrow \mu \gamma$, $e\gamma$

Phys. Lett. B 666, 16 (2008)


Blinding box approach evaluating BG out side the signal region

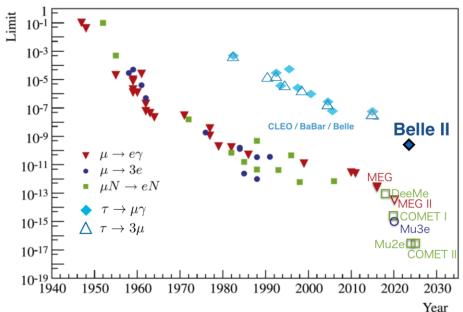
- Search with 545 fb⁻¹
 - − Main BG : $\tau \rightarrow \mu \nu \nu$ + ISR γ
 - miss/missing tracks
- $\tau \to \mu \gamma$: Br < 4.5 x 10⁻⁸ (90%CL)
- $\tau \to e \gamma$: Br < 1.2 x 10⁻⁸ (90%CL)


Belle result (2008)


28

Background reduction at Belle II

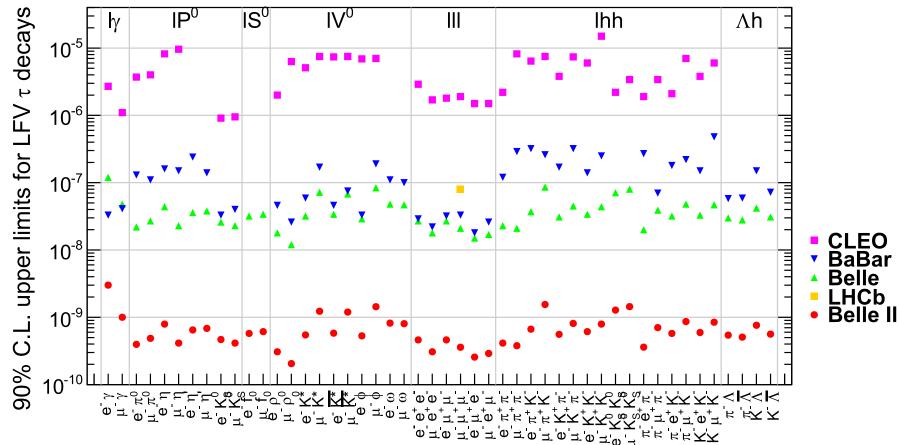
- Timing information helps to reduce γ from beam BG
 - 16 % inefficiency in $\tau \rightarrow \mu \gamma$
- Event shape information provides good separation of ISR- from signal


Expectation of LFV search at Belle II

Belle II will reach the New Physics Models in first several years

Sensitivity depends on BG level
 => Improve achievable
 sensitivity

With final statistics at 50ab⁻¹


- $B(au o\mu\gamma){\sim}{
 m O}(10^{-9})$ and $B(au o\mu\mu\mu){\sim}{
 m O}(10^{-9})$
- Slopes depend on background

old plots, conservative

Upper limits at (Super) B factories

- Current estimation with Belle II final statistics: ~10⁻² lower
 - => Many decay modes are reachable in Belle II!

The Belle II Physics Book arXiv:1808.10567

Summary

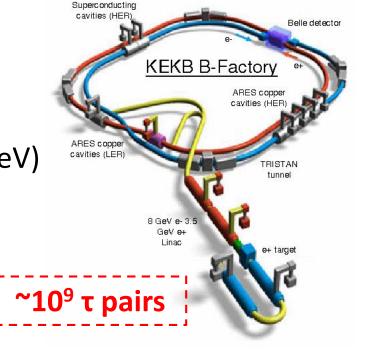
- B factory is open for both B and τ physics in new physics search
 - Studies with B/τ pairs are carried out in Belle and BaBar
 - No significant result has been found yet
- Belle II started full operation at March 2019!
 - Belle II detector is confirmed in Phase II run of 2018
- LFV in B decays into dileptons is nice to look for new physics
 - Search for $B \to K^*l^+l^-$ in Belle opened best constraints
- Many of τ LFV channels are reachable in early years of Belle II
 - Improved Upper limit of Branching fraction by O(10⁻²)
- More details are in "The Belle II Physics Book" <u>arXiv:1808.10567</u>

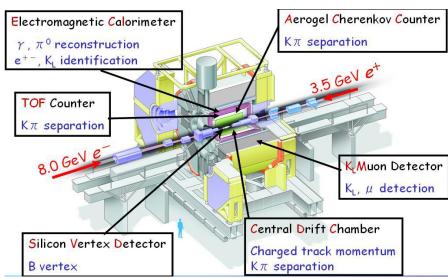
Backup

τ-factory at Belle

τLFV search using full Belle data

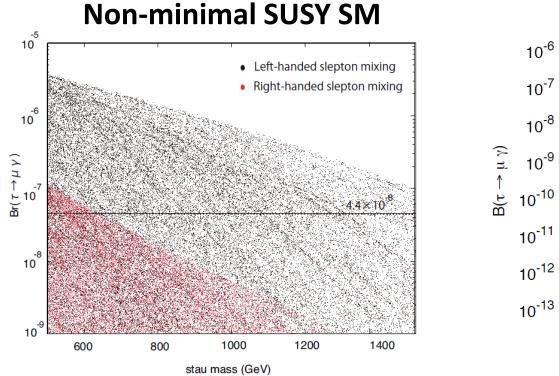
• KEKB: asymmetric e+(3.5 GeV) e-(8 GeV)

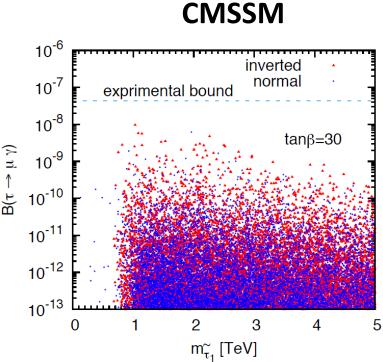

– Peak luminosity: 2.1x10³⁴ cm⁻²s⁻¹


=> World highest peak luminosity

- $-\sigma(\tau\tau) \sim 0.9 \text{ nb}$
- $\sigma(bb) \sim 1.1 \text{ nb}$
- => pure ττ can be collected
- Belle Detector:
 - Good tracking and PID
 - => Lepton efficiency: 90 %

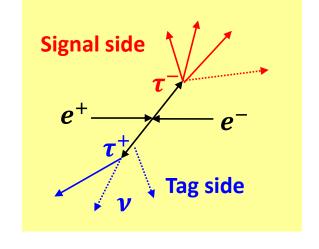
Fake rate: O(0.1) % for e

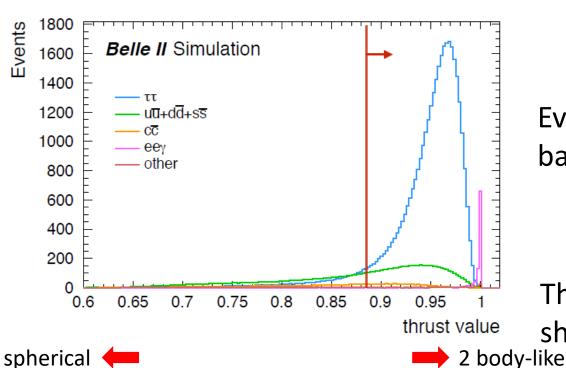

O(1) % for μ



Theoretical predictions

• MSSM cannot make $\tau \to \mu \gamma$ according to recent results

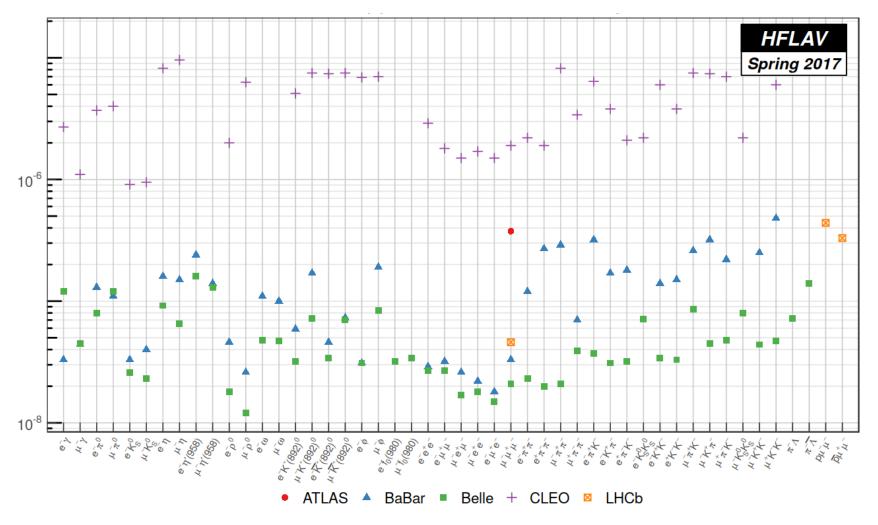

=> These models are possible to search by $au o \mu \gamma$ in Belle II


τ pairs selection in Belle II data

τ pairs are collected by tagging method

• $e^+e^- \rightarrow \tau^{+\tau^-}$ Signal side: 3 tracks

Tag side: 1 prong + missing


Event shapes helps to reduce backgrounds significantly

$$T = \frac{\sum_{i=1}^{N} |\mathbf{T} \cdot \mathbf{p_i}|}{\sum_{i=1}^{N} |\mathbf{p_i}|}$$

Thrust vector, minimizing T, shows sphericity of an event

Jilefical

Upper Limits of Tau LFV

Belle best upper limits in most of the channels