

DOLM!

ES),MI

Belle II

COLPY

001 M

(hough went

030.00

miles

Prospects of Hadron Exotics at Belle II

Chunhua LI

(On behalf of Belle II Collaboration)

Liaoning Normal University

Exotic Hadrons: Theory and Experiment at Lepton and Hadron Colliders T.D. Lee Institute, Shanghai Jiao Tong University, Jun.25-27, 2019

XYZ observed in experiments

SuperKEKB

An asymmetric electron-positron collider e+~ 4GeV e-~ 7GeV

SuperKEKB Luminosity Project

Belle II Detector

Belle II Schedule

- V
- Phase1, Feb.-June, 2016
 - Accelerator commissioning, no collision
- V
- Phase2, Feb.-July 17, 2018
 - Collision w/o vertex detectors
 - Understand background and detector performance
 - Instantaneous luminosity reach ~0.5x10³⁴ cm⁻²s⁻¹
 - ~0.5 fb-1 data at the Y(4S) resonance was collected

Belle II Schedule

First Collision on Apr. 26, 2018

Belle II Performance (Phase2 data)

Belle II Performance (Phase2 data)

Production of charmonium(-like) states at B-factory

- B decay B→KX(c̄c̄)
 - X(3872)→ππJ/ψ, X(3915)→ωJ/ψ,
 Z(4050)+/Z(4250)+ →π+χ_{c1}...
 - $\eta_c(2S) \rightarrow KsK\pi$, $\psi_2(1D) \rightarrow \gamma \chi_{c1}$
- Initial state radiation (ISR)
 - JPC = 1--
 - Y(4260)→ππJ/ψ, Zc(3900)→πJ/ψ...
- Two-photon
 - $J^{PC} = 0^{-+}, 0^{++}, 2^{++}...$
 - X(3915)→ωJ/ψ, X(4350)→φJ/ψ...
- Double charmonium
 - X(3940)→DD*, X(4160)→D*D*...

Expected statistics @50 ab⁻¹ of XYZ

State	Production and Decay	N
X(3872)	$B \rightarrow KX(3872), X(3872) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 14400$
Y(4260)	ISR, $Y(4260) \to J/\psi \pi^+ \pi^-$	$\simeq 29600$
Z(4430)	$B \to K^{\mp} Z(4430), Z(4430) \to J/\psi \pi^{\pm}$	$\simeq 10200$

Charmonium(-like) by B Decays

$B \rightarrow KX_{C\overline{C}}$

Search for the missing narrow charmonium

- Spin-singlet $\eta_{c2}(1D)$ J^{PC} = 2⁻⁺
- Cannot decay to DD due to parity conservation
- Promising search channel: B→K(h_cγ)

Study of exotics

- Determine spin-parities of the observed states with full amplitude analyses e.g. X(3915), Z(4050), Z(4250).
- Confirm or deny the existing unconfirmed states, e.g.
 - Four states were observed by LHCb, X(4140),
 X(4274), X(4500), X(4700) in B→K(φJ/ψ)
- Search for new exotics

Charmonium(-like) by B Decays

$$B \rightarrow KX_{c\bar{c}}$$

Determination of absolute branching of $Xc\overline{c}$ and search for new exotics with inclusive reconstruction

- Full reconstruction of one B
- Recoil of the Kaon in another B
- Extract the $Br(B \rightarrow KX_{c\bar{c}})$

Belle: PRD 97, 012005 (2018)

$$\mathcal{B}(B^+ \to \eta_c K^+) = (12.0 \pm 0.8 \pm 0.7) \times 10^{-4}$$

 $\mathcal{B}(B^+ \to \eta_c (2S)K^+) = (4.8 \pm 1.1 \pm 0.3) \times 10^{-4}$

Uniquely done in e+e- B-factories

3.75

3.8

3.85

 $M_{miss(K^+)}$ (GeV/c²)

3.65

M_{miss(K⁺)} (GeV/c²)

Full Event Interpretation (FEI)

- Reconstruct one out of the two B mesons
- Increasing efficiency by tagging more decay channels than Belle
- More automation and analysis-specific optimizations
- Training includes generic-mode for analysis w/o signal-side selection and specific modes for w/ signal-side selection
- Essential for the analysis w/o full reconstruction of B meson e.g. (semi-)leptonic decay, B→KX_{cc̄} inclusive analysis

Tag	FR ¹⁰ @ Belle	FEI @ Belle MC	FEI @ Belle II MC		
Hadronic B^+	0.28%	0.49%	0.61%		
Semileptonic B^+	0.67%	1.42%	1.45~%		
Hadronic B^0	0.18%	0.33%	0.34~%		
Semileptonic B^0	0.63~%	1.33%	1.25~%		

Charmonium(-like) by ISR

- Main force of the discovery of exotics at Belle
 - Discover new exotics
 - Study of the properties of the states
- Study the line shapes in lower regions

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states							
$\pi^+\pi^-J/\psi$	4.23	7.5 (3.0)	$Y(4008), Y(4260), Z_c(3900)$							
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	$Y(4260), Y(4360), Y(4660), Z_c(4050)$							
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}							
$\pi^+\pi^-h_c$	4.23	15 (6.5)	$Y(4220), Y(4390), Z_c(4020), Z_c(4025)$							
$\omega\chi_{c0}$	4.23	35 (15)	Y(4220)							

Belle II Physics Book: arXiv:1808.10567

10ab-1 50ab

Charmonium-like by two-photon

- $\gamma\gamma \rightarrow \omega J/\psi$ by Belle and BaBar $X(3915) = \chi_{c0}(2P)$?
- $\gamma\gamma \rightarrow D\overline{D}$ by Belle and BaBar $X(3930) = \chi_{c2}(2P)$?
- Precise measurements of the properties of X(3915), X(3930) are needed
- X(4350) in γγ→φJ/ψ (3.2σ) by Belle
- limited statistics
- Belle II will revisit the process (also in B decay) to confirm or deny the state

Double Charmonium

Observed the $x_{c0}(2P)$ candidate X(3860) by Belle

- e+e-→ J/ψ D̄D̄
- Reconstruct J/ψ and one D,
- Another D is identified by the recoil mass M(J/ψD)

 $e^+e^- \rightarrow J/\psi X$

- The recoil of J/ψ or ψ(2S)
- Observed X(3940), X(4160)

Prospects at Belle II

- Full amplitude analysis to measure spin-pariti of the observed new states
- Studies of e+e- \rightarrow h_cX, e+e- \rightarrow η_cX ...

Belle, PRL 98, 082001 (2005)

Bottomonium(-like) States

- Precious measurements of observed resonances e.g. $M(\eta_b)$, $\Gamma(\eta_b)$, $\Gamma(x_{b0})$
- Search for the missing conventional bottomonia below the BB threshold e.g.
 - Y(2D₃) triplet
 - $\eta_b(3S)$, $\eta_b(1D)$, $Y(1D_{1,3})$
 - F-wave states

Name	L	\overline{S}	J^{PC}	Mass, MeV/ c^2	Emitted hadrons [Threshold, GeV/c^2]
$\eta_b(3S)$	0	0	0-+	10336	ω [11.12], ϕ [11.36]
$h_b(3P)$	1	0	1+-	10541	$\pi^{+}\pi^{-}$ [10.82], η [11.09], η' [11.50]
$\eta_{b2}(1D)$	2	0	2-+	10148	ω [10.93], ϕ [11.17]
$\eta_{b2}(2D)$	2	0	2-+	10450	ω [11.23], ϕ [11.47]
$\Upsilon_J(2D)$	2	1	$(1,2,3)^{}$	10441 - 10455	$\pi^{+}\pi^{-}$ [10.73], η [11.00], η' [11.41]
$h_{b3}(1F)$	3	0	3^{+-}	10355	$\pi^{+}\pi^{-}$ [10.63], η [10.90], η' [11.31]
$\chi_{bJ}(1F)$	3	1	$(2,3,4)^{++}$	10350 - 10358	ω [11.14], ϕ [11.38]
$\eta_{b4}(1G)$	4	0	4^{-+}	10530	ω [11.31], ϕ [11.55]
$\Upsilon_J(1G)$	4	1	$(3,4,5)^{}$	10529 - 10532	$\pi^{+}\pi^{-}$ [10.81], η [11.08], η' [11.49]

Belle II Physics Book: arXiv:1808.10567

Search for molecular states near $B^{(*)}\overline{B}^{(*)}$ thresholds

- Observed Z_b(10610), Z_b(10650) in Y(5S, 6S) transitions
- Search for new molecular states near B^(*)B^(*) thresholds, produced threshold is up to 11.43GeV

Table 132: Expected molecular states with the structure $B\bar{B}$, $B\bar{B}^*$ and $B^*\bar{B}^*$ [1370].

$I^G(J^P)$	Name	Content	Co-produced particles	Decay channels
			[Threshold, GeV/c^2]	
1+(1+)	Z_b	$Bar{B}^*$	$\pi \ [10.75]$	$\Upsilon(nS)\pi$, $h_b(nP)\pi$, $\eta_b(nS)\rho$
$1^{+}(1^{+})$	Z_b'	$B^*ar{B}^*$	$\pi~[10.79]$	$\Upsilon(nS)\pi$, $h_b(nP)\pi$, $\eta_b(nS)\rho$
$1^{-}(0^{+})$	W_{b0}	$Bar{B}$	$ ho$ [11.34], γ [10.56]	$\Upsilon(nS)\rho, \eta_b(nS)\pi$
$1^{-}(0^{+})$	W_{b0}'	$B^*ar{B}^*$	$ ho$ [11.43], γ [10.65]	$\Upsilon(nS)\rho, \eta_b(nS)\pi$
$1^{-}(1^{+})$	W_{b1}	$Bar{B}^*$	$ ho$ [11.38], γ [10.61]	$\Upsilon(nS) ho$
$1^{-}(2^{+})$	W_{b2}	$B^*ar{B}^*$	$ ho$ [11.43], γ [10.65]	$\Upsilon(nS) ho$
$0^{-}(1^{+})$	X_{b1}	$Bar{B}^*$	η [11.15]	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^{-}(1^{+})$	X_{b1}'	$B^*ar{B}^*$	$\eta~[11.20]$	$\Upsilon(nS)\eta,\eta_b(nS)\omega$
$0^{+}(0^{+})$	X_{b0}	$Bar{B}$	$\omega~[11.34],~\gamma~[10.56]$	$\Upsilon(nS)\omega,~\chi_{bJ}(nP)\pi^+\pi^-,~\eta_b(nS)\eta$
$0^{+}(0^{+})$	X_{b0}'	$B^*ar{B}^*$	ω [11.43], γ [10.65]	$\Upsilon(nS)\omega,~\chi_{bJ}(nP)\pi^+\pi^-,~\eta_b(nS)\eta$
$0^+(1^+)$	X_b	$Bar{B}^*$	ω [11.39], γ [10.61]	$\Upsilon(nS)\omega,~\chi_{bJ}(nP)\pi^+\pi^-$
$0^+(2^+)$	X_{b2}	$B^*ar{B}^*$	ω [11.43], γ [10.65]	$\Upsilon(nS)\omega,\chi_{bJ}(nP)\pi^+\pi^-$

Energy frontier of Belle II

Existing Y datasets, Belle II could collect large datasets in these points

Experiment	Scans	$\Upsilon(6S)$	$\Upsilon(5S)$		$\Upsilon(4S)$		$\Upsilon(3S)$		$\Upsilon(2S)$		$\Upsilon(1S)$	
	Off. Res.	fb^{-1}	fb^{-1}	10^{6}								
CLEO	17.1	-	0.1	0.4	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R_b scan			433	471	30	122	14	99	_	
Belle	100	~ 5.5	36	121	711	772	3	12	25	158	6	102

- Interesting physics beyond Y(6S)
 - Λ_bΛ̄_b threshold ~ 11.24 GeV, up to 11.35GeV could cover Λ_bΛ̄_b threshold region
 - Search for new molecular states around 11.5-11.6 GeV e.g. partners of X(3872) and Z_b via vector states transition
- Machine limits
 - The range of beam energies covers the Y(1S) and Y(6S) resonance for physics operation.
 - Maximum center of mass energy is 11.24GeV in SuperKEKB due to the maximum beam energy of the injector linac.
 - Linac upgrade is required for running beyond 11.24GeV.

Summary

- As a intensity frontier experiment, Belle II will play an important role in answering existing puzzles in the field of quarkonium with its huge statistical samples.
 - Confirm or deny the observed unconventional states
 - Precise measurements of the properties of the observed exotics
 - Search for missing conventional states and new exotics
- Belle II phase3 operation has started, 6 fb⁻¹ are collected, and the luminosity is to 5x10³³ so far, machine tunning is undergoing for the target luminosity.
- We aim to operate 8-9 months per year.