Belle II Results and Prospects

Miki Nishimura (KEK) on behalf of the Belle II collaboration

Opportunities at Future High Energy Colliders IFT Madrid, June 2019

1

Outline

Introduction

What we can see in Belle II SuperKEKB and Belle II On-going Physics Run (Phase III) Conclusion

Belle II Experiment

 B Factory experiment at world's highest luminosity e⁻e⁺ collider, SuperKEKB in Japan.
 Precise measurements in clean environment
 Search for rare/forbidden decay
 Compare with SM prediction precisely
 Rich physics programs
 Measure B, D and T decays

Belle II Collaboration

~1000 members, 26 countries

Ways to find new physics

Energy frontier

 Directly produce heavy particles coming from new physics
 ATLAS, CMS

Luminosity frontier

 Precisely measure many processes which can be affected by new physics in loop.
 Belle II, LHCb

Belle II and LHCb

LHCb

- pp collisions
- Powerful: B mesons can be produced quickly

Belle II
ee collisions
Clean: Less background.

What we can see in Belle II

Reveal new physics at high mass scales, even beyond the direct reach of the LHC

Belle II will access a large number of new observables to test for new physics in flavor transitions in the quark and lepton sectors.

CP violating phases in the quark sector?

multiple Higgs bosons?

Iepton flavor violation beyond the SM?

••••

Previous B factory experiments

- The B factories Belle and BaBar (1999 to 2010) recorded over 1.5 ab⁻¹ of data.
- Both experiments provided the experimental confirmation that led to the 2008 Nobel prize.

Year 10

Data Accumulation

Data Accumulation

CKM unitarity triangle

We have to measure time dependence (i.e. $\Delta t \neq 0$) to see the mixing contribution. 14

Time dependent CP

Belle II Results and Prospects

Current CKM Matrix

We can find the area the triangle apex which is compatible with all the measurements. Kobayashi-Maskawa theory is OK at this precision.

CP Asymmetry beyond KM

- CP asymmetry in b → ss̄s
 B → φK_s, η'K_s, K_sK_sK_s
 Uncertainty from theory is a few %.
 New physics may affect in Penguin loop.
- Belle II will measure more precise to new physics region.

Charged Higgs

- Many new physics predicts charged Higgs.
- □ $B \rightarrow \tau \nu$, $B \rightarrow D \tau \nu$ is good tool to probe new physics.
 - Charged Higgs affects the branching fraction of these decays in tree level.
 - Because of large masses the difference b/w NP and SM is large. $B \rightarrow \tau \nu$: $(1 - M_B^2 \tan \beta^2 / M_H^2)^2$

Full Reconstruction

- Full reconstruction in tag side is essential to measure the decay with large missing energy.
 - □ One of the advantages of e⁺e⁻ collider experiment

Charged Higgs | Prospects

Statistics limits the accuracies.

The study of the MSSM Higgs through this decay modes is only possible with the statistical power of SuperKEKB.

 $B \rightarrow \tau \nu$ $B \rightarrow D\tau\nu$ 1000 **5σ discovery 5**σ discovery region region 800 800 400 (5ab⁻¹) (50ab⁻¹) Mass (GeV/c²) Mass (GeV/c²) Mass (GeV/c⁻) 600 400 Η[‡] 벞 ± 200 Belle₂₀₀ Belle 200 Tevatron Run I 100 Tevatron Run I Tevatron Run I Excluded (95% C.L.) Excluded (95% C.L LEP Excluded (95% C.L.) LEP 20 **40** 60 80 100 20 80 40 60 100 20 80 40 60 100 $\tan \beta$ tan B tan β

Lepton Universality

- The discrepancy b/w SM and measurement is 3.1 σ
- SM prediction is very solid.
- We can confirm the excess with ~5 ab⁻¹ data.

Lepton Universality in loop

Flavor Violation in Charged Lepton Sector

□ SM does not have any mechanism to change flavor in lepton sector.

- Direct evidence of NP
 - Sensitive to wide-range of models.
 - Model-independent, important to synergy with other measurements to specify possible models.

TLFV Golden Channels

$\square \quad T {\rightarrow} \mu \gamma$

Many NP predicts the largest branching fraction in TLFV modes.

□ т→3µ

- Sensitive to Higgs mediated model, Double-charged Higgs
- Clean channel. Sensitivity goes up proportional to statistics.

As example $\mathcal{B}(\tau^- \rightarrow \mu^- \mu^+ \mu^-)$	Little Higgs w/ T-parity	MSSM (dipole)	MSSM (Higgs)	
$\mathcal{B}(au^- ightarrow \mu^- \gamma)$	0.4 2.3	$\sim 1 \times 10^{-3}$	0.06 0.1	

JHEP0705(2007)013

TLFV Golden Channels

$\square \ T \rightarrow \mu \gamma$

Many NP predicts the largest branching fraction in TLFV modes.

□ т→3µ

- Sensitive to Higgs mediated model, Double-charged Higgs
- Clean channel. Sensitivity goes up proportional to statistics.

With several ab⁻¹ data we will update the search!

As example $\underline{\mathcal{B}(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}$	Little Higgs w/ T-parity	MSSM (dipole)	MSSM (Higgs)	
${\cal B}(au^-\! ightarrow\!\mu^-\!\gamma)$	0.4 2.3	$\sim 1 \times 10^{-3}$	0.06 0.1	

Tau LFV in Belle II

Belle II is not only B factory but also tau factory.

- Measuring tau flavor violating decay is one of important topics in Belle II.
- Clean environment of Belle II is good to see such a low-multiplicity events.

SuperKEKB and Belle II

SuperKEKB target

Luminosity

Precision: denser beams, smaller β^* (x20) \longrightarrow Nano-beam scheme

Nano-beam scheme

Collide longer and thinner bunches with large crossing angle.

32

SuperKEKB Specs

		KEKB		SuperKEKB		unito
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7.007	GeV
Beam crossing angle	φ	22		83		mrad
β function @ IP	βx [*] / <mark>βy</mark>	1200/ <mark>5.9</mark>		32 <mark>/0.27</mark>	25/ <mark>0.30</mark>	mm
Beam current	l _b	1.64	1.19	3.6	2.6	Α
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Belle to Belle II

Higher luminosity causesHigher event rateHigher background

Detector should be upgraded to have same or better performance in the SuperKEKB environment.

Belle II Detector

Vertex Detector

Pixel Detector & Silicon Vertex detector

Central Drift Chamber

CDC in Belle II

Smaller cell

- reduce hit rate on one cell against increase background.
- Larger outer radiusBetter momentum resolution

	Belle II CDC			
Number of layers	56			
Total sense wires	14336 He:C ₂ H ₆ (1:1) Au-W (ø30 μm)			
Gas				
Sense wire				
Field wire	Al (ø126 μm)			

Stereo and axial layers

Upgrade DAQ to reduce dead time

Time Of Propagation (TOP) counter

Aerogel Ring Imaging Cherenkov (ARICH) counter

Time Of Propagation (TOP) counter

 K/π ID by measuring difference of path length.

- 16 modules arranged around the interaction point
- Backward side: expansion prism, PMTs and readout
- Forward side: spherical mirror

Aerogel Ring Imaging Cherenkov (ARICH) counter

K/ π ID with Cherenkov imaging

Silica Aerogel radiator
 n = 1.045-1.055

Hybrid Avalanche Photo Detectors

- 420 units, 144 channels each, 5 mm pixelated
- □ Gain = 7 10⁵
- □ QE > 28%

Electromagnetic Calorimeter

Electromagnetic Calorimeter

- CsI(Tl) crystals
 16.1 X₀ (30 cm)
 Reuse
- New electronics 2 MHz waveform sampling for the barrel part

K_L and Muon Separation

K_L and Muon Separation

Barrel: Belle RPCs reused

- Two inner layers replaced by scintillator strips (BKG)
- Scintillator strips with WLS fibers
- Hamamatsu SiPM S10362

Endcap:

 RPCs replaced with polystyrene scintillators
 99% geometrical acceptance. σ ~ 1ns

Belle II status

- Phase 1: SuperKEKB commissioning without final focusing and without Belle II detector. (January - June 2016)
- Phase 2: Collision data taking with final focusing. Belle II with no final vertex detector. (April July 2018. Recorded ~500 pb⁻¹ at Y(4S))
- Phase 3: Collision data taking with full Belle II detector. STARTED MARCH 2019.

Nano-beam

□ Nano-beam scheme works successfully.

 $\sigma = 4.5 \text{ mm}$

Belle II case 2018 data

Nano-beam

□ Nano-beam scheme works successfully.

Belle II first event (April 2018)

Track Reconstruction

Charged particle are successfully reconstructed by Belle II trackers, CDC and partial VXD.

□ Particles are identified by **CDC**, TOP, and ARICH

Central Drift Chamber dE/dx

□ Particles are identified by CDC, **TOP**, and ARICH

Particles are identified by CDC, TOP, and ARICH

Particles are identified by CDC, TOP, and ARICH

Photon Reconstruction

Photon is reconstructed with several modes.

Event Shape

$$R_2 = H_2/H_0$$

BB events are spherical shape.

 Obtained data contains rich BB samples.
 Collider energy is well-tuned at the BB resonance 4S.

B Reconstruction

We successfully reconstructed B events.

 $B \rightarrow D^{(*)} h , B \rightarrow J/\psi K^{(*)}$

 $D^0 \rightarrow K^- \pi^+$

B Reconstruction

Reconstructed semileptonic *B* decays

- □ Tau mass measurement with 3x1 prong
- Obtained data is understood well.
- Need more statics for cLFV search. MC study is on-going for coming data.

Phase III

Physics run with ALL detectors.

Accelerator
 tuning is also
 on-going.

Phase 3 = (almost) final setup for physics \rightarrow 4 full layers of silicon strips \rightarrow 1 + 1/6 full layers of pixel \rightarrow full installation approx in 2020

Continuous injection

 Beam lifetime is several minutes at designed luminosity.
 Continuous injection is necessary.

Continuous injection

 Beam lifetime is several minutes at designed luminosity.
 Continuous injection is necessary.

Going further

We are increasing beam current and number of bunch.

 Further beam squeezing will be performed from this autumn.
 Final target 0.3 mm

Integrated Luminosity

Data Accumulation

- Belle II experiment at SuperKEKB aims at reveal new physics to perform precise measurements of heavy flavor decays.
- □ We succeed in operating the Belle II detectors and SuperKEKB.
 - Belle II detector performance was confirmed with several decay channels.
 - Further work in SuperKEKB is underway to reach the target luminosity stepby-step.
- Physics run with the full detector is running.
- Soon we'll have many exciting physics result!

Back up

Belle II Physics

Observables	Expected the. accu-		Expected Fa		Facility (2027	7)	lilling at a mus state of 50 state			
racy e		exp. u	exp. uncertainty				Ultimate precision, 50 ab ⁻¹			
UT angles & sides								•		
$\phi_1 [^\circ]$	***		0.4		Belle II					
ϕ_2 [°]	**		1.0		Belle II					
ϕ_3 [°]	***	CKM	$1.0 \\ 1\%$		LHCb/Belle II		OLIARKONIUM			
$ V_{cb} $ incl.	***				Belle II		QUAILITOINI			
$ V_{cb} $ excl.	***		1.5%		Belle II					
$ V_{ub} $ incl.	**		3%		Belle II			DARK SECTOR		
$ V_{ub} $ excl.	**		2%		Belle II/LHC	Ъ				
CP Violation										
$S(B \to \phi K^0)$	***	0.01/	0.02		Belle II					
$S(B \to \eta' K^0)$	***	CPV	0.01		Belle II		\/_r	v Rich Physics		
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***		4	Belle II			Programl			
$\mathcal{A}(B \to K^+ \pi^-)$ [10 ⁻²]	***		0.20		LHCb/Belle	Π				
(Semi-)leptonic		(Comi)			,		110	gram:		
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	(Semi)	3%		Belle II					
$\mathcal{B}(B \to \mu \nu)$ [10 ⁻⁶]	**	LEPTONIC	7%		Belle II					
$R(B \rightarrow D\tau\nu)$	***		3%	Belle II Belle II/LHCb						
$R(B ightarrow D^* au u)$	***	LIUV	2%			Ъ				
Radiative & EW Penguins										
				$\mathcal{B}(B \to X_s \gamma)$	_	**		4%	Belle II	
				$A_{CP}(B \to X$	$(s,d\gamma) [10^{-2}]$	***		0.005	Belle II	
			-	$S(B \to K^0_S \pi^0)$	(γ)	***	EWP	0.03	Belle II	
				$S(B \to \rho \gamma)$.,	**		0.07	Belle II	
E. Kou, P. Urquijo et al. Belle II Physics book,				$\mathcal{B}(B_s \to \gamma \gamma)$	$[10^{-6}]$	**		0.3	Belle II	
				$\mathcal{B}(B \to K^* \nu i$	$\overline{7}$ [10 ⁻⁶]	***		15%	Belle II	
				$\mathcal{B}(B \to K \nu \overline{\nu})$	10^{-6}	***		20%	Belle II	
				$R(B \to K^* \ell \ell)$	()	***		0.03	Belle II/LHCb	
arXiv: 1808.10567				Charm	/					
				$\mathcal{B}(D_s \to \mu\nu)$		***		0.9%	Belle II	
(Accepted		PTEP)	B	$\mathcal{B}(D_s \to \tau \nu)$		***	CHARM	2%	Belle II	
				$A_{CP}(D^0 \rightarrow$	$K_{s}^{0}\pi^{0}$) [10 ⁻²]	**	OTATIM	0.03	Belle II	
				$ a/p (D^0 \rightarrow I)$	$\chi^{0}_{c}\pi^{+}\pi^{-})$	***		0.03	Belle II	
				$\phi(D^0 \to K_{eff}^0)$	$(\pi^{+}\pi^{-})$ [°]	***		4	Belle II	
				Tau	/[]			-		
			$\tau \rightarrow \mu \gamma [10^{-1}]$	10	***		< 50	Belle II		
			$\tau \rightarrow e\gamma \ [10^{-1}]$	loj	***	TAU	< 100	Belle II		
				$\tau \rightarrow \mu \mu \mu$ [10]	-io ₁	***		< 3	Belle II/LHCh	
				$\tau \rightarrow \mu \mu \mu $ [10]	-10]	***		< 3	Belle II/LHCb	

PCP2019

ш

71

6

Lepton universality

- The discrepancy b/w SM and measurement was ~4σ
- $->3.1\sigma$: Updated in 2019

Prospects

□ What we can see near future (several fb⁻¹ level),

Semileptonic B decaysu

- $B \rightarrow \pi I v$ and $\rho I v$
- Hadronic B Decays
 - $B \rightarrow K \pi (10 \text{ fb}^{-1})$ V
 - $B \rightarrow \Phi K (10 \text{ fb}^{-1}) \text{V}$
 - $B \rightarrow J/\psi K (2-10 \text{ fb}^{-1})$ \J
 - Time dependent *B* mixing (10 fb⁻¹) B lifetimes (2-10 fb⁻¹)

Radiative Electroweak Penguins

- B→K^{*} γ (2 fb⁻¹)
- B→X_s γ (10 fb⁻¹)
- Non-B physics
 - Dark sector searches (10 fb⁻¹)
 - D lifetimes (2 fb⁻¹), D⁰ \rightarrow K⁺ π^- , D⁰ \rightarrow K⁺ $\pi^-\pi^0$ (10 fb⁻¹)

Belle II

The reconstruction process

 $\langle \rangle$

Axion-like particle (ALP)

75