

CKM physics at Belle II

Jim Libby (IIT Madras) Anomalies 2019 18th July 2019

Overview

- Why CKM?
- SuperKEKB and Belle II
 - Current status
- CKM physics highlights
 - φ₁/β
 - φ₃/γ
 - |V_{xb}|
- Conclusion

CKM matrix

- Two-by-two mixing matrix proposed by Cabibbo
 - Kobayashi-Maskawa proposed third generation to explain observed CP violation by **Cronin and Fitch**
- 3 × 3 unitary complex matrix
 - 4 parameters
 - 3 mixing angle and 1 phase
- Intergenerational coupling disfavoured

 $\begin{pmatrix} u & c & t \end{pmatrix} \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

Relative magnitude of elements

CKM matrix

- Two-by-two mixing matrix proposed by Cabibbo
 - Kobayashi-Maskawa proposed third generation to explain observed CP violation by Cronin and Fitch
- 3 × 3 unitary complex matrix
 - 4 parameters
 - 3 mixing angle and 1 phase
- Intergenerational coupling disfavoured

 $\begin{pmatrix} u & c & t \end{pmatrix} \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

Visualising CP violation: the unitarity triangle $\lambda = \sin \theta_{\rm C} = 0.22$ ¹⁾ $\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 [1 - (\rho - i\eta)] & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$

Visualising CP violation:
the unitarity triangle
$$\lambda = \sin \theta_{c} = 0.22$$

1) $\begin{pmatrix} 1 - \lambda^{2}/2 & \lambda \\ -\lambda & 1 - \lambda^{2}/2 \\ A\lambda^{3} [1 - (\rho - i\eta)] & 1 - \lambda^{2}/2 \\ -A\lambda^{2} & 1 \end{pmatrix} + O(\lambda^{4})$
2) Exploit unitarity (1st and 3rd col.) $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = C$
3) $V_{ud}V_{ub}^{*} \phi_{2} & V_{td}V_{tb}^{*}$
 $\phi_{1} = \beta = \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{ud}V_{ub}^{*}}\right)$

 $\phi_1 = \beta = \arg$

 $\simeq \arg\left(\frac{1}{1-\rho-i\eta}\right)$

CKM Physics at Belle II - Jim Libby 18/7/19

 $V_{ud}V_{ub}^*$ $V_{td}V_{tb}^*$ ϕ_2 ϕ_1 ϕ_3 $V_{cd}V_{cb}^*$

Visualising CP violation:
the unitarity triangle
$$\lambda = \sin \theta_{c} = 0.22$$

1) $\begin{pmatrix} 1 - \lambda^{2}/2 & \lambda \\ -\lambda & 1 - \lambda^{2}/2 & A\lambda^{3} (\rho - i\eta) \\ A\lambda^{3} [1 - (\rho - i\eta)] & 1 - \lambda^{2}/2 & A\lambda^{2} & 1 \end{pmatrix} + O(\lambda^{4})$
2) Exploit unitarity (1st and 3rd col.) $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = C$
3) $V_{ud}V_{ub}^{*} \alpha & V_{td}V_{tb}^{*} & \phi_{1} = \beta = \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{ud}V_{tb}^{*}}\right)$

 $\phi_1 = \beta = \arg$

 $\simeq \arg\left(\frac{1}{1-\rho-i\eta}\right)$

CKM Physics at Belle II - Jim Libby 18/7/19

 $V_{ud}V_{ub}^*$ $V_{td}V_{tb}^*$ α β **1** $V_{cd}V_{cb}^*$

Over constraint

Tree level only

Over constraint

Blanke and Buras, Eur. Phys. J. **C79** (2019) no.2, 159

BELLE II AND SUPERKEKB

B-factory achievements

Belle II: can never have too much of a good thing (× 50 Belle)

• But isn't LHCb doing this already?

Property	LHCb	Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1
$\int L dt$ (fb ⁻¹) by ~2024	~25	~50,000
Background level	Very high	Low
Typical efficiency	Low	High
π^0 , K_S reconstruction	Inefficient	Efficient
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Very good
Collision spot size	Large	Tiny
Heavy bottom hadrons	<i>B_s, B_c, b</i> -baryons	Partly B _s
au physics capability	Limited	Excellent
B-flavor tagging efficiency	3.5 - 6%	36%

"Moore's" Law of Luminosity

14

The path to higher luminosity

Brute force: Increase beam currents by a factor of 5-10! Increase the beam-beam parameter by a factor of a few (crab cavities). Too hard, too expensive (power, melt beam pipes)

The path to higher luminosity

(1) Smaller β_{y}^{*} (20 x)

(2) Increase beam currents (~2-3x)

Schedule and status

Schedule and status

Schedule and status

CKM Physics at Belle II - Jim Libby 18/7/19

CKM Physics at Belle II - Jim Libby 18/7/19

Particle reconstruction – electrons and muons

Particle reconstruction

B and D meson reconstruction

CKM Physics at Belle II - Jim Libby 18/7/19

B and D meson reconstruction

 $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+$ $\tau = (370 \pm 40) \text{ fs}$

BELLE II PROSPECTS: ϕ_1

In SM $S_f = \sin 2\beta$ and $C_f = 0$ when no CPV in f

CKM Physics at Belle II - Jim Libby 18/7/19

Time-dependent CPV violation

Time-dependent CPV violation

Time-dependent CPV violation

Flavour tagging

- Use leptons, kaons, pions and Λs not associated with signal
- Belle II more variables, MVA and leverage improved PID

 $\overline{B}{}^{0} \rightarrow D^{*+} \overline{\nu}_{\ell} \ell^{-}$ $\downarrow D^{0} \pi^{+}$ $\downarrow X K^{-}$ $\overline{B}{}^{0} \rightarrow D^{+} \pi^{-} (K^{-})$ $\downarrow K^{0} \nu_{\ell} \ell^{+}$

Flavour tagging

- Use leptons, kaons, pions and Λ s not associated with signal
- Belle II more variables, MVA and leverage improved PID
- Validated on Belle data

 $\overline{B}{}^0 \rightarrow \Lambda_c^+ X^-$

CKM Physics at Belle II - Jim Libby 18/7/19

Prospects

Phys. Rev. Lett. 108, 171802 (2012)

	Belle (1 ab^{-1})					
Sample	Value Stat. $(\times 10^{-3})$ Syst. $(\times 10^{-3})$					
$B \to J/\psi K_S$	+0.67	29	13			
$b \to c \bar{c} s$	+0.667	23	12			

Prospects

Phys. Rev. Lett. 108, 171802 (2012)

	Belle (1 ab^{-1})					
Sample	Value Stat. $(\times 10^{-3})$ Syst. $(\times 10^{-3})$					
$B \to J/\psi K_S$	+0.67	29	13			
$b \to c \bar{c} s$	+0.667	23	12			

Measurement becomes systematically limited

	Belle II (50 ab^{-1}					
Sample	Stat. $(\times 10^{-3})$ Syst. (1) $(\times 10^{-3})$			Syst. (2) $(\times 10^{-3})$		
		Red.	Non-red.	Red.	Non-red.	
$B \to J/\psi K_S$	3.5	1.2	8.3	1.2	4.4	
$b \to c \bar{c} s$	2.7	2.6	7.0	2.6	3.6	

Half en Half fu

Optimist

Pessimist

Realist

Physicist

Surrealist

Glass

Relativist

Utopist

Scepticist

Nihilist

37

ies

Prospects

Phys. Rev. Lett. 108, 171802 (2012)

	Belle (1 ab^{-1})					
Sample	Value Stat. $(\times 10^{-3})$ Syst. $(\times 10^{-3})$					
$B \to J/\psi K_S$	+0.67	29	13			
$b \to c \bar{c} s$	+0.667	23	12			

Measurement becomes systematically limited

)			
Sample	Stat. $(\times 10^{-3})$ Syst. (1) ($(1) (\times 10^{-3})$	Syst. (2) $(\times 10^{-3})$	
		Red.	Non-red.	Red.	Non-red.
$B \to J/\psi K_S$	3.5	1.2	8.3	1.2	4.4
$b \to c \bar{c} s$	2.7	2.6	7.0	2.6	3.6

Half empty: no improvement in systematics Half full: improvement in alignment and vertexing uncertainties

BELLE II PROSPECTS: ϕ_3

Measuring ϕ_3

Tree-level determination γ

- Same final state for *D* and $\overline{D} \Rightarrow$ interference \Rightarrow **the possibility of DCPV**
- Four types of D final states generally used
 - CP-eigenstates [GLW]
 - Gronau & London, PLB 253, 483 (1991), Gronau, & Wyler, PLB 265, 172 (1991)
 - K⁺X⁻ (X⁻=π⁻, π⁻ π⁰, π⁻π⁻ π⁺) CF and DCS [ADS]
 - Atwood, Dunietz & Soni, PRD 63, 036005 (2001)
 - Self-conjugate multibody states: K_sh⁺h⁻ [Dalitz/GGSZ]
 - Giri, Grossman, Soffer and Zupan, PRD 68, 054018 (2003); Bondar (unpublished)
 - None of the above (SCS): $K_SK^+\pi^-$ [GLS]
 - Grossman, Ligeti and Soffer, Phys. Rev. D67 071301 (2003)

World averages

From all measurements of $B \rightarrow D^{(*)}K^{(*)}$ from GLW, ADS, and GGSZ (Belle + BaBar + LHCb)

ϕ_3 at Belle II

GGSZ dominates the Belle average

$$\phi_3 = (73^{+13}_{-15})^{\circ}$$

• Will continue to do so at Belle II

ϕ_3 at Belle II

GGSZ dominates the Belle average

$$\phi_3 = (73^{+13}_{-15})^{\circ}$$

- Will continue to do so at Belle II
- PID and continuum suppression key

BELLE II PROSPECTS: V_{xb}

- Untagged
 - · Loose constraints on signal
 - · Very large statistics, but also very large background
 - Efficiency $\epsilon \approx \mathcal{O}(100\%)$

purity

- Untagged
 - Loose constraints on signal
 - Very large statistics, but also very large background
 - Efficiency $\epsilon \approx \mathcal{O}(100\%)$
- Semileptonic tag
 - Mid-range reconstruction efficiency $\epsilon \approx \mathcal{O}(1\%)$
 - Due to multiple neutrinos, less information about B_{tag}

purity

- Untagged
 - · Loose constraints on signal
 - · Very large statistics, but also very large background
 - Efficiency $\epsilon \approx \mathcal{O}(100\%)$
- Semileptonic tag
 - Mid-range reconstruction efficiency $\epsilon \approx \mathcal{O}(1\%)$
 - Due to multiple neutrinos, less information about Btag
- Hadronic tag
 - Cleaner sample
 - Knowledge of p(Bsig)
 - Low tag-side efficiency $\epsilon \approx \mathcal{O}(0.1\%)$

T.Keck, et al. Comput Softw. Big Sci (2019) 3: 6

> 5000 B decays modes reconstructed ٠

 B_{tag}

O(200) particle decay channels for training ٠

 $B_{\rm sig}$

Output is candidate-wise signal probability

 $\cdot \nu_e$

 B_{tag}

O(200) particle decay channels for training

 $B_{\rm sig}$

 $\nu_{ au}$

Output is candidate-wise signal probability

New Full Event Interpretation (FEI) algorithm for tag-side reconstruction

- > 5000 B decays modes reconstructed
- O(200) particle decay channels for training
- Output is candidate-wise signal probability

	Tagging	ε on IVIC	
Tag	FR ¹	FEI Belle	FEI Belle II
Hadronic B ⁺	0.28%	0.76%	0.66%
SL B ⁺	0.67%	1.80%	1.45%
Hadronic B ⁰	0.18%	0.46%	0.38%
SL <i>B</i> ⁰	0.63%	2.04%	1.94%

T.....

MAG

¹Belle Full Reconstruction algorithm.

FEI results in 2019

FEI results in 2019

FEI results in 2019

Assume theory LQCD uncertainty improves

CKM Physics <mark>at</mark>

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	50 ab^{-1}
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	3 7-3 7
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm 3.0\%_{\text{ex.}} \pm 1.4\%_{\text{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{\mathrm{ex.}} \pm 3.0\%_{\mathrm{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91\cdot(1\pm24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%

X)	r
V	xb

Assume theory LQCD uncertainty improves

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	la a co n
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm 3.0\%_{\text{ex.}} \pm 1.4\%_{\text{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{\text{ex.}} \pm 3.0\%_{\text{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91\cdot(1\pm24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%

Aside from the overall constraint on the Unitarity Triangle these measurements will go some way to understand the long-standing tension between inclusive and exclusive measurements

Conclusion

 Belle II has begun but there is a long way to go to 50 ab⁻¹

Conclusion

- Belle II has begun but there is a long way to go to 50 ab⁻¹
- Precise measurements of ϕ_1 , ϕ_3 and V_{xb} will be made with sample
- Many interesting results to appear prior to that, once the Belle luminosity is crossed

Conclusion

- Belle II has begun but there is a long way to go to 50 ab⁻¹
- Precise measurements of ϕ_1 , ϕ_3 and V_{xb} will be made with sample
- Many interesting results to appear prior to that, once the Belle luminosity is crossed
- What will the UT look like in 2027.....

Belle

- Operation from 1999 to 2010
- $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ for CKM measurements
- Asymmetric energy to allow time-dependent measurements
- Coherent production of $B^0 \overline{B^0}$
- Low multiplicity
- Detectors with good tracking, PID and calorimetry
 - plus hermeticity for full event reconstruction/tagging

Tracking performance - 2019

Tracking performance - 2019

CKM Physics at Belle II

Tracking performance - 2019

Ohnishi-san eeFACT, HKUST Super KEKB performance

Ohnishi-san eeFACT, HKUST Super KEKB performance

 $\sigma = 4.5 \text{ mm}$

σ = 550 µm

measurement at Belle II

Ohnishi-san eeFACT, HKUST Super KEKB performance

