FIRST LOOK AT TIME-DEPENDENT CP VIOLATION USING EARLY BELLE II DATA

DANIEL ČERVENKOV ON BEHALF OF THE BELLE II COLLABORATION AUG 8, 2019 | LEPTON-PHOTON

CHARLES UNIVERSITY

- $\Upsilon(4S)$ mass (10.58 GeV) right above $B^0\bar{B}^0$ production threshold (10.56 GeV) \Rightarrow *B*-mesons are at \sim rest in the $\Upsilon(4S)$ frame
- Boosted $\Upsilon(4S) \Rightarrow$ boosted *B*-mesons
- B-mesons are antisymmetrically entangled \Rightarrow when the first one decays, we know the other one is the opposite flavor at $\Delta t = 0$
- If we can measure the time between the two decays and deduce the flavors of the decaying Bs, we can analyze time-dependent CPV
- Don't know the precise position of BB production, but we can measure where they decay

- Vertex positions coming mainly from Pixel Detector (PXD) and Silicon Vertex Detector (SVD)
- PXD
 - $\sim 50 \times 60 \times 75 \, \mu m$
 - DEPFET based
 - 1 layer + 1 coming in 2021
 - 14 mm from the beam
- SVD
 - · 4 double-sided layers
 - r from 39 to 135 mm
 - $17^{\circ} < \theta < 150^{\circ}$
- $\beta \gamma = 0.28 \, (2/3 \, \text{KEKB})$

- Most precise determination from tree-level $b \rightarrow c$ processes
- Uncertainty will be dominated by systematics at Belle II (alignment, Δt resolution)
- Independent determination from $b\to sq\bar q$ penguin dominated processes; loops \Rightarrow suppressed, but possible influence of New Physics

Channel	WA	5 ab ⁻¹	50 ab ⁻¹
$J/\psi K_S^0$	0.022	0.012	0.0052
$\eta' K_S^0$	0.06	0.032	0.015
$\Phi' K_S^0$	0.12	0.048	0.020

 $\sigma(S)$ at various luminosities (projections)

- Golden channel for time-dependent CPV
- Large-ish branching fraction 8.7×10^{-4} (all $B^0 \to J/\psi K^0$) and negligible contributions of other than $b \to c\bar{c}s$ tree-level processes
- Measurement of $sin(2\beta)$ dominated by this channel
- Selection and reconstruction is the first step towards time-dependent CPV measurement
- $B^{\pm} \rightarrow J/\psi K^{\pm}$ control channel
- No TD CPV (and no direct CPV) nice check
- Larger branching fraction

$$\Delta E = E_B^* - E_{\mathrm{beam}}^*$$

$$M_{\mathrm{bc}} = \sqrt{E_{\mathrm{beam}}^{*2} - p_B^{*2}}$$

- 2D unbinned ML fit
- Shaded regions excluded to suppress $B^0 \rightarrow J/\psi K^{*0}$

Type	Yield	
N _{signal}	29.6 ± 5.3	
N _{background}	1.6 ± 0.3	

- Can be measured via isospin analysis of $B^0 \to \pi\pi$ and $B^0 \to \rho\rho$
- B-factories could not measure phase of $B^0 \to \pi^0 \pi^0 \Rightarrow$ eightfold ambiguity in α
- By measuring phase (TDCPV) of $B^0 \to \pi^0 \pi^0$ reduce ambiguitty to by $2 \times$ or $4 \times$ (depends on parameter values)
- How to measure B vertices from π^0 s?
 - Dalitz decay $\pi^0 \rightarrow \gamma e^+ e^- (\mathcal{B} \approx 1.2\%)$
 - $\gamma \rightarrow e^+e^-$ conversion in the beam pipe or PXD
 - Vertex resolution should be only 50% worse than with charged final state (still better than Belle)
- With full dataset $B^0 \to \pi\pi$ and $B^0 \to \rho\rho$ should reach $\sigma(\alpha) \approx 0.6^{\circ}$

CONCLUSION 8

- Belle II is taking data more info in Tom Browder's talk from Monday
- First lifetime and mixing results see Reem Rasheed's talk
- · Time-dependent CPV analyses are in the pipeline
- $B^0 \to J/\psi K_S^0$ will be the dominant channel in β/ϕ_1 determination
- Belle II should reach sub-degree precision of α/ϕ_2 using $B^0\to\pi\pi$ and $B^0\to\rho\rho$

THANK YOU!

• $\beta \gamma = 0.28 \, (2/3 \, \text{KEKB})$

- Integrated amplifier in every pixel
- Fast, low noise, but also fully depleted with large sensitive volume

- Point of closest approach (POCA)
- Gray curve is ellipse with $\sigma_x = 14.8 \, \mu \text{m}$ $\sigma_y = 1.5 \, \mu \text{m}$ values from simulation
- Data from two-track events registered by PXD, SVD and CDC
- Data points are above the curve because of detector resolution

- Many different final states, all including neutrals
- Cleaner theory than other penguin-dominated channels ⇒ easier comparison of S to tree-dominated decays
- Statistical uncertainty expected to reach systematics level at 10–20 ab⁻¹