

The Belle II experiment Status and Prospects

Kunxian Huang¹ Behalf of the Belle II collaboration ¹National Taiwan Univ. @NuFACT 2019, Daegu, Korea

Outline

- SuperKEKB accelerator and Belle II detector
 Road to high Luminosity
 Operation of Phase 3
 Performance of Phase 2 and phase 3
 Physics Prospects
 Particle re-discovered @ Belle II
- Decay mode re-discovered @ Belle II

B factory experiment milestones

- Belle and Babar experiments operated until ~2010 used e⁻e⁺ accelerator with asymmetry energies to produce mass of B mesons. 1.5 ab⁻¹ data are recorded.
- Target of luminosity of SuperKEKB/Belle II is 50 ab⁻¹.
- High luminosity, boosted B meson.
 - CKM matrix unitary angles
 - CP violation
 - Rare B/D meson decays
- LFV/LNV in tau decays
- Search for tetraquark & pentaquark

5

SuperKEKB & Belle II schedule

- Phase 1: Background, Optics Commissioning, Feb-June 2016. No Collision.No Belle Detector.
- Belle II Detector rolled-in to the beamline, Apr., 2017
- Phase 2: Pilot run, Superconducting Final Focus, add positron damping ring,
 First Collisions (0.5 fb⁻¹). No VXD detector. April 27–July 17, 2018
- Phase 3: Physics run started in 27 March 2019. Will continue with 7 months/year. Full Belle detector.

Belle II collaboration

<u>Korea institutes:</u> Chonnam, Gyeongsang, Hanyang, KISTI, Korea, Kyungpook, Seoul, Soongsil, Yonsei

- Belle II now has grown to ~948 researchers from 26 countries.
- Youth and potential: There are 330 graduate students in the collaboration. •

VXD (PXD+SVD) detector installed in Phase 3

Installation work finished Nov. 2018.

- PXD: Two layers of DEPFET pixel sensors r=14mm, r=22mm.
 - Only inner layer and small part of outer layer installed, replacement with full system in 2021
- SVD: Four layers of double sided strip detectors r=39mm to r=140mm

First Collisions in Phase 3

-100 Belle II

Luminosity of SuperKEKB/Belle II phase 3

Parameter	Achieved In phase 3	Target
I _{LER} (A)	0.880	2.6
I _{HER} (A)	0.940	3.6
β _y (mm)	2	0.3
# of bunches	1576	2364
L	Det on 6.1 x 10 ³³	8 x 10 ³⁵
(cm ⁻² s ⁻¹)	Det off 12 x 10 ³³	0 2 10

Impact parameter resolution $\sigma_{y^{\sim 1.5 \mu m}}$

Impact parameter distributions in two-track events. Alignment and calibration are working well.

K/π identification by TOP detector

K and π tracks are tagged from the charge of the slow π (daughter of D*+) in the decay of $D^{*+} \rightarrow D^0[K^-\pi^+]\pi^+$. A kaon track consist with the kaon-hypothesis PDF.

Physic Prospect

Rich Physics in Belle II

The Belle II Physics Book arXiv:1808.10567 accepted by PTEP

Integrated Luminosity target: 50 ab⁻¹

	-								
	•	GGSZ	ϕ_3	***	$>\!50$	**	***	*	**
	•	GLW	ϕ_3	2***	$>\!50$	**	***	*	**
	•	ADS	ϕ_3	**	$>\!50$	**	***	*	***
		Time-dependent	$\phi_3 - \phi_2$	**	-	**	**	*	*
		D 0.550							
		$B \to \pi^0 K^0$	$A_{\rm CP}, I_{I}$	χ_{π} H a	aror	17 G *	* **	* ***	**
		$B \to \rho K$	$A_{\rm CP}, I_{\rm I}$	Κρ	* -	**	**	* -	**
		$B o \ell \nu \gamma$	λ_B	*	* -	**	* **	* *	**
		$B \to \rho K^*$	γ pola	ri. ★	* -	**	**	-	***
		$B \to K^+ K^- / \pi^+ \pi^-$	$-$ Br., A_{c}	CP *	* -	*	**	* **	**
olden mode		$B \to K\pi\pi, KKK$	A_{CP}	*	* -	*	*	***	*
		$B_s \to K^0 \overline{K}^0$	lifetim	e	* -	**	**	* -	**
ilvor modo	•	$D^0 \rightarrow K^0_S K^0_S$	$A_{\rm CP}$ +	*** (har	11 * *	**	*	*
itver mode	٠	$D^+ \to \pi^+ \pi^0$	$A_{\rm CP}$ +	**	-	***	**	*	**
	•	$D_s \to \ell^+ \nu$	f_{D_s} +	**	-	***	*	-	**
		$D^0 \to V \gamma$	$A_{\rm CP}$	*	-	**	**	**	**
		$D^0 \to \gamma \gamma$	Br.	*	-	**	**	**	**
		$D^0 ightarrow u ar{ u}$	Br.	**	-	***	**	***	***
		$D \to \ell^+ \nu$	$f_D \rightarrow$	**	-	*	*	-	**
				D	-				
		$\tau \to \mu \gamma$		Br.	a 🗛	>50	*** >	*** *	***
		$\tau \rightarrow l l l$		Br.	***	>50	*** >	*** *	***
		$\tau \to K \pi \nu$		$A_{\rm CP}$	***	-	*** >	*** **	**
		$e^+e^- \to \gamma A'(\to \mathrm{invi})$	isible)	σ	***	-	*** >	*** *	***
		$e^+e^- \to \gamma A' (\to \ell^+)$	ℓ-)	σ	***	-	*** 7	*** *	***
		π form factor		g-2	**	-	* * *	** **	***
		ISR $e^+e^- \to \pi\pi$ g-	2	g - 2	**	-	*** >	*** **	***
						_			

Belle II also has Quarkonium and Dark sectors.

Few selected topics are mentioned later. 14 "The Belle II Physics Book" has more exciting topics.

	Leptonic/Semi-leptonic								
	-49	Table	~~	imit	Dist	o 11e	al	4	
	Process	Obser,	Theor,	54 ^{5. UL}	VS Lhe	VS Beu	Anomic	NP	
	$B \to \pi \ell \nu_l$	$ V_{ub} $	***	10-20	***	***	**	*	
	$B \to X_u \ell \nu_\ell$	$ V_{ub} $	**	2 - 10	***	**	***	*	
•	$B \to \tau \nu$	Br.	***	>50(2)	***	***	*	***	
	$B ightarrow \mu \nu$	Br.	***	>50(5)	***	***	*	***	
	$B \to D^{(*)} \ell \nu_{\ell}$	$ V_{cb} $	***	1-10	***	**	**	*	
	$B \to X_c \ell \nu_\ell$	$ V_{cb} $	***	1-5	***	**	**	**	
	$B \to D^{(*)} \tau \nu_{\tau}$	$R(D^{(*)})$	***	5 - 10	**	***	* * *	***	
	$B \to D^{(*)} \tau \nu_{\tau}$	P_{τ}	***	15 - 20	***	***	**	***	
	$B \to D^{**} \ell \nu_{\ell}$	Br.	*	-	**	***	**	-	
		R	adia	tiv	> / F\	/P			
•	$B \to K^{(*)} \nu \nu$	$Br., F_L$	***	>50	***	***	*	**	
•	$B \to X_{s+d} \gamma$	A_{CP}	***	$>\!50$	***	***	*	**	
•	$B \to X_d \gamma$	$A_{ m CP}$	**	$>\!50$	***	***	-	**	
•	$B \to K^0_S \pi^0 \gamma$	$S_{K^0_S\pi^0\gamma}$	**	$>\!50$	**	***	*	***	
•	$B\to \rho\gamma$	$S_{ ho\gamma}$	**	$>\!50$	***	***	-	***	
	$B \rightarrow X_s l^+ l^-$	Br.	***	$>\!50$	***	**	**	***	
	$B \rightarrow X_s l^+ l^-$	R_{X_s}	***	> 50	***	***	**	***	
•	$B \to K^{(*)} e^+ e^-$	$R(K^{(*)})$	***	$>\!50$	**	***	***	***	
	$B \to X_s \gamma$	Br.	**	1-5	***	*	*	**	
	$B_{d,(s)} \to \gamma \gamma$	$Br., A_{\rm CP}$	**	>	**	**	-	**	
				50(5)					
	$B \to K^* e^+ e^-$	P'_5	**	> 50	***	**	***	***	
۲	$B \to K \tau l$	Br.	***	$>\!50$	**	***	**	***	
	$\mathbf{D} \rightarrow \mathbf{I}/\mathcal{I}/\mathbf{V}^0$	I		10					
	$B \to J/\psi K_S^\circ$	ϕ_1	****	V-10	**	**	*	*	
	$B \to \phi K_S^0$	ϕ_1	**	>50	**	***	*	***	
	$B \to \eta' K_S^{\circ}$	ϕ_1	**	>50	**	***	*	***	
-	$B \rightarrow J/\psi \pi^0$	ϕ_1	***	>50	*	***	-	-	
	$B \rightarrow \rho^{\pm} \rho^{0}$	ϕ_2	***	-	*	***	*	*	
	$B \rightarrow \pi^0 \pi^0$	ϕ_2	**	>50	***	***	**	**	
	$B \rightarrow \pi^0 K_S^0$	$S_{\rm CP}$	**	>50	* * *	***	**	**	

CKM unitarity triangle global fit

Error depress much

Lepton	B _{SM}
е	(8.89±0.73)×10 ⁻¹²
μ	(3.80±0.31)×10 ⁻⁷
τ	(8.45±0.70)×10 ⁻⁵

Leptonic Decays of $B^+ \rightarrow \mu^+ \vee \& B^+ \rightarrow \tau^+ \vee$

- Leptonic decay: Tree process. Branching fractions of $B^+ \rightarrow \ell^+ \nu$ in SM is proportional to m_{ℓ}^2 as below function.
- proportional to m_ℓ^2 as below function. • $\mathbf{B}(B^+ o l^+
 u)_{SM} = rac{G_F^2 M_B M_l^2}{8\pi} (1 - rac{M_l^2}{M_B^2}) f_B^2 |V_{ub}|^2 au_B$
- Clean processes with accurate theoretical BF.
- Small theoretic uncertainties in SM
 - \circ Good probe for new physics in tree process.
- The effect of two Higgs doublet models (2HDM II) to branching ratio of $\mu^{+}\nu$ is as below:

$${f B}_{2HDM\,II}=r_H{f B}_{SM},\,r_H\sim (1-t_eta^2rac{m_B^2}{m_H^2})^2$$
 arXiv:1903.0301

• If NP affects only on $\tau^+ v$ mode, to eliminate uncertainties of f_B and $|V_{ub}|$. The below ratios are used to prove NP.

$$R_{pl} = rac{ au_{B^0}}{ au_{B^+}} rac{{f B}(B^+ o au^+
u_ au)}{{f B}(B^0 o \pi^- l^+
u_l)} \qquad \qquad R_{pl} = rac{{f B}(B^+ o au^+
u_ au)}{{f B}(B^+ o \mu^+
u_\mu)}$$

PRL 121, 031801

Belle result:

Semileptonic tag (PRD 92(5),051102,2015)
BF=[1.25±0.28(stat.)±0.27(syst.)]×10⁻⁴.
Hadronic tag (PRL 110,131801,2013)
BF=[0.72+0.27-0.25(stat.)±0.11(syst.)]×10⁻⁴

- |V_{ub}| measurement
- Exploit new method of Full Event Interpretation (FEI) to select correct reconstruction of B_{sig} & B_{tag}.
 - B_{tag} can be hadronic tag or semileptonic
 - Efficiency (total few 10^{-3}) is higher than the method used in Belle.
- Feature: 2 or 3 neutrinos in final state.
 M_{miss}² :large in τ leptonic, small in τ hadronic
- Due high rate of beam background, cluster timing, crystal energy $E_0/E_{25} \rightarrow$ select π^0 .

Belle II

$E_{\rm ECL}$		$< 1{\rm GeV}$	$< 0.25\mathrm{G}$
	Background yield [events]	7420	1348
Belle II	 Background yield [events] I Signal yield [events] Signal efficiency (‰) Background yield [events] Signal yield [events] Signal efficiency (‰) 	188	136
		2.2	1.6
	Background yield [events]	2160	365
Belle	Signal yield [events]	97	60
	Signal efficiency $(\%)$	1.2	0.7

B⁺→µ⁺v

Belle result: (PRL 121,031801,2018) BF=[6.46±2.22(stat.)±1.60(syst.)]×10⁻⁷.@ 2.4σ

- As the tag efficiency is low, better not to use tag method.
- Background: continuum, πℓν, ρℓν, and BB generic.
- Neural Network/GBDT is used to suppress background.
 - 14 input parameters that is uncorrected with $|P_{\mu}|$. Output: 0_{nn}
- P_u^{*} in CM frame
- Feature: $P_{\mu}^{B} \sim M_{B}^{2}/2$ in B rest frame. \circ Convert P_{μ}^{*} to P_{μ}^{B}
- Likely to claim observation at 5 ab^{-1} .

l	$\mathcal{B}_{ ext{SM}}$	$711 \ {\rm fb}^{-1}$	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
au	$(7.71 \pm 0.62) \times 10^{-5}$	61200 ± 5000	430000 ± 35000	4300000 ± 350000
μ	$(3.46 \pm 0.28) \times 10^{-7}$	275 ± 23	1930 ± 160	19300 ± 1600
e	$(0.811 \pm 0.065) \times 10^{-11}$	0.0064 ± 0.0005	0.0453 ± 0.0037	0.453 ± 0.037

Luminosity	$R_{\rm ps}$	$R_{ m pl}$	
$5{ m ab}^{-1}$	[-0.22, 0.20]	[-0.42, 0.29]	
$50{ m ab}^{-1}$	[-0.11, 0.12]	[-0.12, 0.11]	18

 $\Delta E = E(B \text{ cand.}) - E_{beam}$

$M_{bc} = \sqrt{E_{beam}^2 - P(B \text{ cand.})^2}$

- Color suppressed tree process. Experimental result is BF=[1.31±0.19(stat.)±0.18 (syst.)]×10⁻⁶ Belle 2017
 - Theory paper for this enhancement:PRD 73,114014 (2006), PRD 83,034023 (2011)
 - \circ $\,$ More data and lower sys error are needed.
- Φ_2 angle measurement by direct CP violation. $A_{CP} = 0.14 \pm 0.36 \pm 0.10$
- Due to high rate of beam background, timing and E_9/E_{25} selection of γ are important.
- Flavor tag of B_{tag}
- Spreaded signal shape in ΔE

 $B^0 \rightarrow \pi^0 \pi^0$ decay

 $\Delta E = E(B \text{ cand.}) - E_{beam}$

$M_{bc} = \sqrt{E_{beam}^2 - P(B \text{ cand.})^2}$

- Color suppressed tree process. Experimental result is BF=[1.31±0.19(stat.)±0.18 (syst.)]×10⁻⁶ Belle 2017
 - Theory paper for this enhancement:PRD 73,114014 (2006), PRD 83,034023 (2011)
 - \circ $\,$ More data and lower sys error are needed.
- Φ_2 angle measurement by direct CP violation. $A_{CP} = 0.14 \pm 0.36 \pm 0.10$
- Due to high rate of beam background, timing and E_9/E_{25} selection of γ are important.
- Flavor tag of B_{tag}
- Spreaded signal shape in ΔE

 $B^0 \rightarrow \pi^0 \pi^0$ decay

Possible Theory

<u>II, Ĉ, Ī</u>, "

 \circ Baryon form factor

- Cheng & Yang PRD 66
 014020 ('02)
- Chua, Hou, Tsai PRD
 66 054004 ('02)
- Quasi 2-body decay
 - Chua, Hou, Tsai PLB
 544 139 ('02)
- Direct CP violation is also shown in B⁺->ppK⁺ at M_{pp}<2.85 GeV by LHCb

Angular asymmetries of Baryonic B decays

• angle between p direction and the meson/photon direction in BB-bar rest frame.

• etc.

- $\overline{B}^{0} \rightarrow \overline{n} \Lambda^{0} \gamma$
- B⁻→p**n**K⁻
- B⁻→ppℓv
- $B^{0} \rightarrow p \overline{p} \pi^{0}$
- $B^0 \rightarrow p \overline{\Sigma}^0 \pi^-$
- $B^+ \rightarrow p \overline{p} \rho^+$

Possible topics

Lepton Flavor Violation au Decays at Belle II

- Super B-Factory, and τ factory too! $\sigma(e+e- \rightarrow \Upsilon(4s)) = 1.05 \text{ nb}$ $\sigma(e+e- \rightarrow \tau\tau) = 0.92 \text{ nb}$
- Charged LPV process occur oscillations in loops. In SM, small rate is immeasurable (10^{-49~}~10⁻⁵⁴) for all LFV decays.

$$B(l_1 o l_2 \gamma) = rac{3lpha}{32\pi} |\sum_{i=2,3} U^*_{l_1,i} U_{l_2,i} rac{\Delta m^2_{i1}}{M^2_W}|^2$$

• Charged LFV enhanced in many NP models (10⁻⁷~10⁻¹⁰)

Thrust and visible energy are useful variables in analysis.²⁴

LFV τ Decays at Belle II

- Observation of LFV is a clear signature of New Physics.
- Lower the upper limit by two order of magnitude.

Particle re-discover

Even 1000

M(K0 =====) [Go)//c2]

Belle II

1.92

1.84

1.86 1.88

1.90

Topology of final states of B meson

Jet-like

FW moments variables are used to separate BB pair event from qq-bar events.

Re-discover B meson

Demonstration of Capabilities: Modes with neutrals, and K_s mesons are efficiently reconstructed along with all-charged final states containing kaons and pions.

B decay mode re-discover

FEI: BDT (boosted decision trees) and a large number of B decay modes. Increase yields by O(X8) than FR of Belle.

Semi-leptonic B decays

Untagged of $B^0 \! \to \! D^{*+} \ell^- \nu$ candidates in $m_{miss}^{~2}$ distribution. Clean signal can be seen in e and μ mode.

Observation of $B{\longrightarrow}~K^*\gamma$

First observation radiative penguin process (b \rightarrow s γ) @Belle II.

Observation of $B{\longrightarrow}~K^*\gamma$

Yields consistent with WA branching fraction

5

Time dependent $B^0 - \overline{B^0}$ mixing signature

Oscillation observed

 ${ar B}^0 o D^{*+} l^-
u$

-5

M²_v [GeV²/c⁴]

-15

-10

L dt = 2.66 fb⁻¹ (GeV²/c⁴) B* → D** I events /

-10

-5

M_v² [GeV²/c⁴]

No mixing fraction: $f_{unmix}(t) = K[1 + \cos(\Delta m_d \Delta t)]$ Use "diff" sign of two lepton in the final state. Verifies Belle II VXD capabilities for CP violation. 36

-15

Summary

- Rich physics in Belle II experiment.
 - $\circ~$ CP violation & rare decay of B/D decay, LFV/LNF in τ decay, pentaquark, dark sector and Quarkonium.
- The first physics run in the Super B factory mode (Phase 3) started in spring 2019. Integrated luminosity ~6.5 fb⁻¹.
- Time-dependent capabilities with VXD and particle ID with TOP are demonstrated. Many good results of re-discoveries are presented in phase 3 data.
- SuperKEKB are going through way to world's highest luminosity accelerator. Belle II target at high efficiency data-taking rate to record more physics.
- Phase 3 resume in mid-October and continue until June 2020.

Replace short dipoles with longer ones (LER)

Redesign the lattices of HER & LER to squeeze the emittance

TiN-coated beam pipe with antechambers

New superconducting /permanent final focusing quads near the IP

Add / modify RF system for higher beam current

41

- $\circ~$ Beam profile size: y-axis 50 nm, x-axis 100 $\mu m.$ (nano beam)
- Beam current is about 2 times of KEKB.
- Belle/KEKB recorded ~1000 fb⁻¹. Now we have to change units on the y-axis to ab⁻¹

K₁ identification by ECL pulse shape discriminator

New PID approach: The pulse shape parameters of ECL (electromagnetic calorimeter) can be the inputs of BDT which works as an classifier of $K_{\rm c}/\gamma$.

 K_{L}^{0} candidates selected from $e^{+}e^{-} \rightarrow \phi\gamma \rightarrow K_{s}^{0}K_{L}^{0}\gamma$ control sample in Phase 2 Data and MC.

Phase 2 Data and MC.

			World avera	ge	SM-like		
		Input	2016	Belle II	Belle II (+LHCb) 2025		
		Er	ror will depr	(+LHCb) ess muc 2025	h	Bell	e II
	CKM unita	$ V_{ub} $ (semileptonic)[10 ⁻³]	$4.01 \pm 0.08 \pm 0.22$	± 0.10	3.71 ± 0.09		
	UNIVI UIIILU	$ V_{cb} $ (semileptonic)[10 ⁻³]	$41.00 \pm 0.33 \pm 0.74$	± 0.57	41.80 ± 0.60		
		$\mathcal{B}(B \to \tau \nu)$	1.08 ± 0.21	± 0.04	0.817 ± 0.03		
		$\sin 2\phi_1$	0.691 ± 0.017	± 0.008	0.710 ± 0.008	:h	
	2016	$\phi_3[^\circ]$	$73.2_{-7.0}^{+6.3}$	± 1.5	$67 \pm 1.5 \ (\pm 1.0)$	ab^{-1}	
).7			(± 1.0)			
3	0.6 ¢	$\phi_{3} \phi_{2}[^{\circ}]$	$87.6^{+3.5}_{-3.3}$	± 1.0	90.4 ± 1.0	.m _s	
	has C	Δm_d	0.510 ± 0.003	-	-	DELLER OF AD SM 2017	
	$0.5 \qquad \text{sin } 2\phi_1$	Δm_s	17.757 ± 0.021	-	-	sol.w/cos 2¢ ₁ < 0	
		$\mathcal{B}(B_s \to \mu \mu)$	$2.8^{+0.7}_{-0.6}$	(± 0.5)	$3.31^{+0.7}_{-0.6}~(\pm 0.5)$	(excl) at CL > 0.95)	
I۲		f_{B_s}	$0.224 \pm 0.001 \pm 0.002$	0.001	-	φ, Ξ	
		B_{B_s}	$1.320 \pm 0.016 \pm 0.030$	0.010	-		
3	0.2	f_{B_s}/f_{B_d}	$1.205 \pm 0.003 \pm 0.006$	0.005	-		
	0.1	B_{B_s}/B_{B_d}	$1.023 \pm 0.013 \pm 0.014$	0.005	-		
	φ ₃	$ V_{cd} (\nu N)$	0.230 ± 0.011	-	-	φ ₁	
	-0.4 -0.2 0.0	$ V_{cs} (W \to c\bar{s})$	$0.94^{+0.32}_{-0.26} \pm 0.13$	-	-	0.6 0.8 1.	0
		f_{D_s}/f_{D_d}	$1.175_{-0.004}^{+0.001}$	_	-		
		$\mathcal{B}(D \to \mu \nu)$	0.374 ± 0.017	± 0.010	-		
		ϵ_K	2.228 ± 0.011	-	-		
		$ V_{us} f_+^{K\to\pi}(0)$	0.2163 ± 0.0005	-	0.22449 ± 0.0005		
		$\mathcal{B}(K \to e\nu)$	1.581 ± 0.008	-	1.5689 ± 0.008		
		$\mathcal{B}(K \to \mu \nu)$	0.6355 ± 0.0011	-	0.6357 ± 0.0011		
		$\mathcal{B}(\tau \to K\nu)$	0.6955 ± 0.0096	-	0.7170 ± 0.0096		43
		$ V_{ud} $	0.97425 ± 0.00022	-	-		

Pentaquark search

From $\overline{\Lambda_{b}^{0}} \rightarrow J/\psi K^{-}p$ decay, pentaquarks $P_{c}(4380)^{+}$ and $P_{c}(4450)^{+}$ are found in LHCb.

- Candidates for strange partners of charmed XYZ states e.g. Y(2175)→Φπ⁺π⁻ observed at BaBar and BESIII.
- LHCb search for strange partner

$$P_s^+ \rightarrow \Phi p$$
 in $\Lambda_c \rightarrow [\Phi p] \pi^0$ at 915 fb⁻¹

• No significant signal is found.

Pentaquark search

From F. Forty@ EPS Full Event Interpretation

- Fully reconstruct B decays in many many modes to reduce backgrounds and provide tagging
- Useful for channels with weak exp. signature
 - Missing momentum (many neutrinos in the final state)
 - Inclusive analyses
- Tag with semileptonic decays
 - PRO: Higher efficiency $\epsilon tag \sim 1.5\%$
 - CON: more background, B momentum unmeasured
- Tag with hadronic decays
 - PRO: cleaner events, B momentum reconstructed
 - + CON: smaller efficiency $\epsilon tag \sim 0.3\%$

T.Keck, et al. Comput Softw Big Sci (2019) 3: 6. https://doi.org/10.1007/s41781-019-0021-8

 $B^{\pm/0} \rightarrow X \ell^- v$

FEI is used to select B_{tag}

From R. Rasheed@ Lepton Photon 2019

Flavor Tagger

From the Belle to Belle II

-What has been changed?

PXD, vertex resolution in z direction (beam direction) will be factor 2 better than before:

50 μ m (Belle) \rightarrow 25 μ m (Belle II)

- TOP: no TOF (time-of-flight) detector anymore, but TOP (time-of-propagation) will do the timing of the Cerenkov light. Time resolution ~50 ps. TOP detector surface is polished to nanometer precision for total reflection of Cerenkov light
- KLM: inner 2 layers of barrel + all layers in the endcap replaced by scintillators, because of large background
- ECL readout electronics exchanged, fast FADC sampling for identify pileup of pulses
- Huge gain in luminosity in Belle II compared to Belle: factor x40. How?
 - factor 2 by beam current: 1.64/1.19 A (Belle) \rightarrow 3.6/2.6 A for $e^+(e^-)$ beam in Belle II

 factor 20 by "nano-beam" principle (collision point in vertical direction will be only 59 nm)

Time CP violation measurement

