DARK SECTOR PHYSICS AT BELLE II

Cate MacQueen on behalf of the Belle II Collaboration

TAUP — Toyama, JP — September 12th 2019

DARK SECTOR PORTALS AT BELLE II

- If DM is **not WIMP (or fermionic)**, a portal must exist between the dark sector and the visible sector.
 - Vector Portal: A', Z' Control Detailed Today
 - Psuedoscalar Portal: ALPs
 - Scalar Portal: h
 - Neutrino Portal: Sterile Neutrinos
 - Status of Belle II First Physics data-taking
 - Why are we powerful for dark sector? **performance studies** using first dataset

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

b

A′

Dark

Photon

Other DS

Gauge Bosons

S

h

Dark

Higgs

Quarks

Leptons

 \mathbf{C}

e

Z'

Dark Z'

Bosons

Gauge

g

 Z^0

PROCESSES & MASS REGIMES PROBED BY BELLE II ³

Dark Photon Searches: R. Essig et al. (2009) <u>https://arxiv.org/abs/0903.3941</u> B. Battle et al. (2009) <u>https://arxiv.org/abs/0903.0363</u>

- $e^+e^- \rightarrow \gamma A'$; A' \rightarrow invisible (monophoton search)
- $e^+e^- \rightarrow \gamma A'; A' \rightarrow e^+e^-, \mu^+\mu^-$

Dark Z' Searches: ^{B. Shove, I. Yavin (2014) <u>https://arxiv.org/abs/1403.2727</u> W. Altmannshofer et al. (2016) <u>https://arxiv.org/abs/1609.04026</u>}

- $e^+e^- \rightarrow \mu^+\mu^- Z'; Z' \rightarrow \mu^+\mu^-, invisible$
- $e^+e^- \rightarrow \mu^+e^-Z'$; $Z' \rightarrow$ invisible (LFV Model)

ALP searches: M. Dolan et al. (2017) <u>https://arxiv.org/abs/1709.00009</u>

• $e^+e^- \rightarrow \gamma + ALP$; $ALP \rightarrow \gamma \gamma$ (tri-photon search)

Belle II is probing DS mediators at the MeV-GeV scale

Mass resolution: Direct O(10) MeV/c² Recoil O(100) MeV/c²

Dark Higgs:

 $e^+e^- \rightarrow \tau^+\tau^-h; h \rightarrow dilepton$

"Axiflavons": E. Izaguirre et al (2017) <u>https://arxiv.org/pdf/1611.09355.pdf</u> D. Aloni et al (2018) <u>https://arxiv.org/pdf/1811.03474.pdf</u>

► $B^+ \rightarrow K^+ a \text{ OR } B^0 \rightarrow D^0 a$; $a \rightarrow \gamma \gamma$, gg, invisible (ALPs in EWP decays)

Others: Long-lived particles, Magnetic Monopoles, etc...

E. Kou, P. Urquijo, et al. The Belle II Physics Book (2018) https://arxiv.org/abs/1808.10567

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

SUPERKEKB AND BELLE II

- Asymmetric e⁺e⁻ collisions at Υ(4S) resonance (10.58 GeV)
- Nominally a *B*-Factory
- 900+ members, 100+ institutions, 26 countries

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

SUPERKEKB — THE LUMINOSITY FRONTIER

- Phase 2: 2018
 - First physics data (500 pb⁻¹)
 - Partial vertex detector
- Phase 3: 2019 onwards
 - Physics run from March 2019 (~6.5 fb⁻¹)
 - Will run 7-9 months/year

- Goal: 2027
 - Will reach 50 ab⁻¹

SuperKEKB will have the world's highest luminosity 5

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

THE BELLE II DETECTOR

KL and Muon Detector (KLM) Resistive Plate Counter (barrel outer layers), Scintillator + WLSF + MPPC

(end-caps, inner 2 barrel layers)

EM Calorimeter (ECL) CsI(Tl), waveform sampling electronics

e⁻ beam

(HER = 7 GeV)

Vertex Detector (VXD) 2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD Particle Identification (PID) Time-of-Propagation counter (barrel), Prox. focusing Aerogel RICH (forward)

Central Drift Chamber (CDC) Smaller cell size, long lever arm e⁺ beam (LER = 4 GeV)

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

DARK PHOTON (A') SEARCHES

 $\mathcal{L} \supset \varepsilon A_{\mu} J_{SM}^{\mu}$

R. Essig et al. (2009) <u>https://arxiv.org/abs/0903.3941</u>
B. Battle et al. (2009) <u>https://arxiv.org/abs/0903.0363</u>

Search for $e^+e^- \rightarrow A'\gamma$; $A' \rightarrow$ dilepton pair or invisible

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

CAITLIN MACQUEEN | SEPTEMBER 2019

9

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

CAITLIN MACQUEEN | SEPTEMBER 2019

First data taking was done with very loose triggers

- O(10 nb) acceptance (corresponding to trigger rate of 10 kHz at peak luminosity) — suppressed QED events, without throwing
- algorithms
 - 6000 cpu cores at target luminosity

- 3D tracking implemented in drift chamber trigger
- 3D calorimeter Bhabha veto logic available in calorimeter
- trigger to identify Bhabha events with high purity
- Matching of drift chamber tracks to calorimeter clusters

Hardware (L1) trigger

out DS modes

- Software high level trigger (HLT) Reconstructs events online using offline reconstruction

DEDICATED DARK SECTOR TRIGGER

Process	σ (nb)
$e^+e^-(\gamma)$	300 ± 3
$\mu^+\mu^-(\gamma)$	1.148
$\tau^+\tau^-(\gamma)$	0.919
$\gamma\gamma(\gamma)$	4.99 ± 0.05
$e^+e^-e^+e^-$	39.7 ± 0.1
$e^+e^-\mu^+\mu^-$	18.9 ± 0.1
	≈ 366

10

events means that many dark sector signatures were thrown out by the trigger in previous experiments.

Similarities between dark sector

signatures and radiative bhabha-like

DEDICATED DARK SECTOR TRIGGER

- Considering our *monophoton* signature, we recognize the need for a dedicated dark sector trigger
- Backgrounds: all final state particles except γ outside detector geometry
- Specifically, we can trigger on events with a single highenergy photon in the barrel region of the ECL

Entries / Bin

È

Sigral (example)

2

Beam background

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

Peak at recoil mass

e

CAITLIN MACQUEEN | SEPTEMBER 2019

11

PHOTON RECONSTRUCTION AND RESOLUTION

DARK A' PROJECTIONS FOR BELLE II

- Belle II is competitive in these searches:
 - offset *pointing angle of Calorimeter crystals* (avoid introduction of gaps between crystals)
 - Smaller boost and larger Calorimeter larger acceptance
- This results in an increase in efficiency for photon detection, as well as lepton ID in the Calorimeter

- Radiative tail present in dieled//(onuš)a(@pV#c²)- analysis included Bremsstrahlung recovery.
- Successful reconstruction indicates Belle II has equally strong capabilities for electrons and muons.
- Fine resolution for dilepton events critical for searches like A' → dilepton, as well as other DS searches.

Dark Z'→INVISIBLE (L_µ-L_τ Model)

• Vector portal, Z', coupling to μ and τ

$$\mathcal{L} \supset q_{\chi}g'\bar{\chi}\gamma_{\alpha}\chi Z'^{lpha}$$

$$\uparrow$$
DM charge under

U(1)_{μ-τ} (set to 1)

• Search for $e^+e^- \rightarrow \mu^+\mu^- + inv$, where Z' decays to sterile neutrinos or DM

15

B. Shove, I. Yavin (2014) <u>https://arxiv.org/abs/1403.2727</u>W. Altmannshofer et al. (2016) <u>https://arxiv.org/abs/1609.04026</u>

DARK Z' \rightarrow INVISIBLE (L_µ-L_τ Model)

- Signal Signature:
 - fit to the recoil mass:
 - $\vec{P}_{Z'}=\vec{P}_{b\epsilon am}-\vec{P}_{\mu^+\mu^-}$
 - nothing in rest of event
- Background Sources:
 - $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
 - $e^+e^- \rightarrow \tau^+\tau^-(\gamma) [\tau \rightarrow \mu \nu \nu]$
 - $e^+e^- \rightarrow \mu^+\mu^-e^+e^-$
- tau suppression implemented

Sources of Systematic UncertaintyTracking — 4%Trigger — 4%Lepton ID — 4%

Luminosity — 1.5% Analysis Selection (Background) — 22% Muon Yields (Signal) — 12.5% Muon Yields (Background) — 2%

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

CAITLIN MACQUEEN | SEPTEMBER 2019

16

DARK Z' \rightarrow INVISIBLE (L_µ-L_τ Model)

- First results for Z' to invisible (**publishing very soon**)
- Only using 276 pb⁻¹ due to trigger conditions for twotrack events
- No sensitivity in parameter space $M_{Z'} > 8.0 \text{ GeV}/c^2$ tapering of production cross-section in this regime
- Consistent with SM, constraints on g' presented

DARK $Z' \rightarrow$ INVISIBLE (LFV MODEL)

- Search for $e^+e^- \rightarrow e^+\mu^- + inv$, where Z' decays to sterile neutrinos or DM
- Same analysis selection criteria as the non-LFV case
- Much cleaner background from converted taus, $e^+e^- \rightarrow \tau^+\tau^-(\gamma) [\tau \rightarrow \mu\nu\nu]$
- Efficiencies are model dependent, but no LFV model currently exists

Belle II 2018 - Preliminary

 $L dt = 276 \text{ pb}^{-1}$

80

70È

60

50

40

30

20

10

 $e \cdot \sigma(e^+e^- \rightarrow e^\pm \mu^\mp \text{ invisible}) \text{ [fb]}$

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

6

Recoil mass [GeV/c²]

CAITLIN MACQUEEN | SEPTEMBER 2019

OTHER DARK SECTOR SEARCHES

ALP searches:

- e⁺e⁻ $\rightarrow \gamma$ +ALP; ALP $\rightarrow \gamma \gamma$ (*tri-photon* search) Performed in 0.472 fb⁻¹ of data (2018)
- Calorimeter performance is primary hurdle
- Analysis currently under internal review

"Axiflavons":

► $B^+ \rightarrow K^+ a' \text{ OR } B^0 \rightarrow D^0 a'; a' \rightarrow \gamma \gamma, gg,$ invisible (ALPs in EWP decays)

Search could proceed via a *recoil mass-squared* fit:

$$\vec{P}_{a'} = \vec{P}_{e^+e^-} - \vec{P}_{B_{tag}} - \vec{P}_{K/D}$$

Others: Dark Higgs, Long-lived particles, Magnetic Monopoles, etc...

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

CONCLUSION

Belle II data taking has begun and the **first physics analyses** are underway — active DS program

Looking forward to many **publications** in the near future

- Standard Candle Luminosity Measurements
- Z' \rightarrow invisible analysis (276 pb⁻¹ of 2018 data)
- A' \rightarrow invisible analysis (*monophoton* search)
- Many more under internal review...
- **Performance Studies** are promising
 - Lepton ID
 - Trigger System
 - Tracking Quality

Exciting DS prospects with our **increasing data sample**

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

Cate MacQueen

Caitlin.macqueen@unimelb.edu

@cmqcentaurus

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

CAITLIN MACQUEEN | JUNE 2019

SUPERKEKB — THE LUMINOSITY FRONTIER

- 40 times the peak luminosity (design luminosity of L_{peak} ~ 8 x 10³⁵/cm²/s) of KEKB
 - 2 times as much current
 - 20 times smaller vertical beam size

Ordinary collision (KEKB)

$L = \frac{\gamma_{\pm}}{2er_{e}} \left(1 + \frac{\sigma_{y}^{\star}}{\sigma_{x}^{\star}} \right) \left(\frac{I_{\pm}\zeta_{\pm}y}{\beta_{y}^{\star}} \right) \left(\frac{R_{L}}{R_{y}} \right)$ \uparrow Vertical Beta Function

Beam Current

Nano-Beam (SuperKEKB Phase2)

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION

HADRON ID

 Separation of e and µ from charged hadrons (particularly pions) is critical for many of our dark sector signatures

CDC-dE/dx distribution and predictions

UNIVERSITY OF MELBOURNE | BELLE II COLLABORATION