Dark Matter searches in e⁺e⁻ annihilations & first results from Belle II

Next Frontiers in the Search for Dark Matter

Nataliia Kovalchuk (nataliia.kovalchuk@desy.de)

GGI, Florence, 23.-27.09.2019

Outline

Dark Matter searches in e+e- annihilations

in this talk

Dark Matter searches in e⁺e⁻ annihilations

Collider Method: DM production at collider, model dependent

- Mainly operating at √s = 10.58 GeV
- Clean environment
- Known initial energy of the system

at the KEKB collider KEK, Japan

at the PEP II collider SLAC, USA

SuperKEKB

Next generation B-factory

40x KEKB integrated luminosity: 50 ab-1

- from upgraded ring
 - **×2** ↑ beam current
- from final focus magnets
 - × 1/20 \downarrow β * vertical beta-function at the IP

large crossing angle (83 mrad)

Belle II

The detector

e⁺e⁻ collision @ $\sqrt{s} = 10.58 \text{ GeV}$

> Electromagnetic calorimeter

Csl(Tl) crystals... new readout

K_I and muon (KLM) detectors Resistive plate chambers + (new) scintillator w/ iron flux return

new (larger) magnet Drift chamber 1.5T tracking wires in 50:50 He:C₂H₆ 7 GeV e 4 GeV e+ Dedicated triggers for Dark Matter searches

Data schedule

- 2018: 500 pb⁻¹.
 - Commissioning data.
- 2019:
 ~6.5 fb⁻¹ delivered.
- Expected in 2027:
 50 ab⁻¹.

Dark Matter searches at B-factories

Phenomenology

Renormalizable way of Dark Matter coupling to the SM

Standard Model of Elementary Particles

Vector portal → *Dark photon*

$$\mathcal{L} \supset \epsilon V_{\mu} J_{\mathrm{SM}}^{\mu}$$

Scalar portal (Higgs portal) → *Dark Higgs/Scalars*

$$\mathcal{L} \supset \lambda S^2(H^{\dagger}H)$$

Pseudoscalar portal → Axion-Like Particle dim 5 axion portal

$$\mathcal{L} \supset rac{\partial_{\mu}P}{f_{A}}ar{f}\gamma^{\mu}\gamma^{5}f$$

Neutrino portal → *Sterile Neutrinos*

$$N(LH)$$
 .

Phenomenology

Renormalizable way of Dark Matter coupling to the SM

Standard Model of Elementary Particles three generations of matter mass ≈2.4 MeV/c² ≈1.275 GeV/c² ≈172.44 GeV/c² ≈125.09 GeV/c² charm gluon ≈4.8 MeV/c² b d S down strange bottom e electron Z boson LEPTONS porta electron muon tau W boson neutrino Dark sector ?

SM

▲ mediator

$Y(1S) \rightarrow y$ invisible

Theory

 $M_{med.}$ is very large ightarrow can not be produced on-shell in B-factories DM particle is kinematically accessible

vector mediator $Y(1S) \rightarrow invisible$ spin-0 mediator $Y(1S) \rightarrow y$ invisible

Limits on the branching fraction for Y(1S) decays

Suppression scale of the effective operator parametrizing interactions DM with quarks

Analysis

 $Y(2S) \rightarrow Y(1S) \pi^{+}\pi^{-}$

Bottonium transition with two soft pions

Dipion recoil mass:

$$M_{\text{rec}}^2 = s + M_{\pi\pi}^2 - 2\sqrt{s} E_{\pi\pi}^*$$
, with $M_{\pi\pi}$ is $[2M_{\pi}(M_{Y(2S)} - M_{Y(1S)})]$

Mass scan point with $M_{\text{med.}} = 2.946 \text{ Gev/c}^2$

Background estimation:

Continuum background

- studied with an off-resonance data set
- do not observe any significant peaking backgrounds
- Y(2S)→ττ (irreducible)

Y(1S) decay background (irreducible)

- Y(1S)→II (leptons) do not produce a peak at Eγ but at M_{rec}
- Y(1S)→γhh (hadrons) produce a peak at Eγ and M_{rec}

Used data: Belle, **25 fb**⁻¹ BaBar, **14.4 fb**⁻¹

Theory

Massive vector particle A', mixes with the SM photon:

$$\mathcal{L} \supset \epsilon g_D A'_{\mu} J^{\mu}_{\mathrm{EM}}$$

Can decay to two leptons A' → I⁺I⁻
 Experimentally: search for a narrow peak in I⁺I⁻ mass spectrum on top of large BG

Theory

Massive vector particle A', mixes with the SM photon:

$$\mathcal{L} \supset \epsilon g_D A'_{\mu} J^{\mu}_{\mathrm{EM}}$$

- Can decay to two leptons A' → I⁺I⁻
 Experimentally: search for a narrow peak in I⁺I⁻ mass spectrum on top of large BG
- Can decay directly to light dark matter A' → χ₁χ₂
 Experimentally: negligible interaction with detector
- Experimentalist's trick: require ISR photon

$$E_{\gamma_{\rm ISR}} = \frac{s - m_{A'}^2}{2\sqrt{s}}$$

 Single photon trigger is required not available at Belle, and only 10% BaBar data

Analysis

• First analysis: $ee \rightarrow \gamma A'$, $A' \rightarrow \chi_1 \chi_2$

One photon (no tracks, no other good photon clusters) Bump search in recoil mass spectrum

 $ee \rightarrow eev$ both leptons out of tracking acceptance

4.5

4.0

3.5

3.0

2.5

2.0

Physics reach

At **Belle II**:

single photon trigger

use KLM to detect escaped photons

The Belle II Physics book:

arXiv:1808.10567

BaBar 53 fb⁻¹ analysis:

PRL.119.131804

NA64 2019 analysis:

arXiv:1906.00176

Z' to invisible: $L_{\mu} - L_{\tau}$ model

Theory

- "Dark photon" → Z' if non minimal
- Search is performed in flavour violating and flavour conserving modes
- Mediator coupling to muons and taus, not electrons (L_μ – L_τ)
 Abelian symmetry
- Z' → invisible: calculate a branching fraction and compare to theoretical prediction to find an indication of invisible DM

Z' to invisible: $L_{\mu} - L_{\tau}$ model

Analysis

- ee $\rightarrow \mu\mu Z'$ ($Z' \rightarrow invisible$)
- Bump hunt in recoil mass against µµ. Nothing in the rest of the event
- Kinematic fit of muons → to select events recoil energy point to the barrel (best hermiticity)
- Dimuon trigger

Main background sources:

$$ee \rightarrow \mu\mu(\gamma)$$

 $ee \rightarrow ee\mu\mu$

$$M_{rec} = s + M_{\mu\mu}^2 - 2\sqrt{sE_{\mu\mu}^*}$$

Simulated and reconstructed M_z, in range (0.1 – 10) GeV/c²

Z' to invisible: $L_{\mu} - L_{\tau}$ model

Physics reach

M_{z'} [GeV/c²]

Axion Like Particles (ALPs)

Theory

- Pseudo-scalar coupling to gauge bosons
- After EWSB:

$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

- QED case: the coupling and the mass of the ALPs are independent
- ALPs at Belle II:

light ALPs
$$m_a \approx 1 \text{ MeV/c}^2$$
,

$$g_{avv} \approx (10^{-5} - 10^{-6}) \text{ GeV}^{-1}$$

Invisible:

decays outside of the detector

heavier ALPs $m_a \approx (0.1 - 10) \text{ GeV/c}^2$

ALP-strahlung

Axion Like Particles (ALPs)

Analysis

At higher masses, $m_a > 200 \text{ MeV/c}^2$

Three photons within tracking acceptance: add up to beam energy

- Zero tracks
- Bump on di-photon mass
- The SM background: ee → γγ(γ)
 - Does not peak in γγ
 - Not a 2-body system: use angles & kinematics to suppress

At lower masses

Two photons from ALPs are boosted:
 a cluster is reconstructed with one local maximum

Use the same technique to reconstruct merged π⁰ meson

Axion Like Particles (ALPs)

Physics reach

No systematics. Only (dominant) $ee \rightarrow \gamma\gamma\gamma$ background included 135fb -1 assumes no $\gamma\gamma$ trigger veto in the barrel

Summary

- Dark sector physics at e⁺e⁻ collider → excellent prospects even with very early data
- Only some of results are shown in this talk
- Y(1S) →y invisible: more data are needed
- Single γ: dark photon decaying to stable dark matter Can improve limits from BaBar already with 20 fb⁻¹
- μμΖ': L_μ L_τ dark vector decaying to stable dark matter
 First Z' → invisible analysis with early Belle II data
- 3γ: ALP-strahlung, experimentally clean
 Can perform analysis with calibration collisions data (~500 pb⁻¹ 2018)
- ~ 50 ab⁻¹ of Belle II data is expected to be collected —→ unique opportunity to study Dark Matter in the regions not covered by other experiments

Belle II

