Exotic and Conventional Quarkonium Physics Prospects at Belle II

Bianca SCAVINO bscavino@uni-mainz.de

QUARKONIA:

legacy of 1st generation

B-Factories

- · Charmonium (-like) production
- · Bottomonium (-like): above Y(45)
- · Bottomonium (-like): below Y(45)

QUARKONIA: legacy of 1st generation B-Factories

the next generation B-Factory

- · Charmonium (-like) production
- · Bottomonium (-like): above Y(45)
- · Bottomonium (-like): below Y(45)

B-Factory: a success story

- The series of discoveries started with the observation of the η_c' meson in B → K η_c' decays
- The first exotic state was X(3872), found in B \rightarrow K X(3872)

B-Factory: milestones

B-Factory: legacy

- The legacy of 1st generation B-factories is a variety of quarkonium states
- Good agreement with predictions below open flavor threshold
- Many discoveries are difficult to explain with quarkonium model
- Several states have non-zero charge (cannot be qq pairs)
- Exotic candidates, XYZ states

→ Challenge for the new generation B-factories

QUARKONIA:

legacy of 1st generation

B-Factories

BELLE 11:

the next generation B-Factory

FUTURE PROSPECTS:

- · Charmonium (-like) production
- · Bottomonium (-like): above Y(45)
- · Bottomonium (-like): below Y(45)

6

FUTURE

From KEKB to SuperKEKB

- → Target integrated luminosity:
 50 ab⁻¹ (x50 Belle)
- → Target peak luminosity:
 L = 8 x 10³⁵ cm⁻² s⁻¹ (x40 Belle)

From KEKB to SuperKEKB

- → Target integrated luminosity:
 50 ab⁻¹ (x50 Belle)
- → Target peak luminosity:
 L = 8 x 10³⁵ cm⁻² s⁻¹ (x40 Belle)

From KEKB to SuperKEKB

Current samples in fb⁻¹ (millions of events)

Experiment	$\Upsilon(1S)$	Υ(2S)	Υ(3S)	$\Upsilon(4S)$	Υ(5S)	Υ(6S)	$\frac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII			300(1200)	5x10 ⁴ (5.4x10 ⁴)	1000(300)	100+400(scan)	3.6%

- Y(4S) physics program but not only (important especially for the bottomonium physics program)
- In general, a lot can be done in quarkonium field

Nano beam scheme

	E (GeV) LER / HER	β _y * (cm) LER / HER	β _x * (mm) LER / HER	Φ (mrad)	I (A) LER / HER	L (cm ⁻² s ⁻¹)	IP sketch
KEKB	3.5 / 8.0	5.9 / 5.9	120 / 120	11	1.6 / 1.2	2.1 x 10 ³⁴	
SuperKEK B	4.0 / 7.0	0.27 / 0.30 (Factor 20)	3.2 / 2.5	41.5	3.6 / 2.6 (Factor 2)	80 x 10 ³⁴	

- Squeeze the beam @ IP by 1 / 20
- Double beam currents

The Belle 11 detector

Belle 11 status and schedule

- Phase 1: SuperKEKB commissioning (January June 2016)
- Phase 2: pilot run with limited vertexing (April July 2018)
- Phase 3: collision data taking with full Belle II detector.

Belle 11 status and schedule

- Phase 1: SuperKEKB commissioning (January June 2016)
- Phase 2: pilot run with limited vertexing (April July 2018)
- Phase 3: collision data taking with full Belle II detector. STARTED MARCH 2019!

Few more words about Phase 2

- Phase 2 lasted from April 26th to July 17th
- Pilot run with limited vertexing
 - Most of the silicon tracker replaced by background monitor detectors
 - One full octant of PXD + SVD

- Luminosity tuning had priority on data taking
 - 5.55 x 10³³ cm⁻¹ s⁻² maximum luminosity
 - 0.5 fb⁻¹ of collisions at Y(4S)
- Goals
 - Verification the nano beam scheme
 - Monitoring of the background
 - Commissioning of the detector
 - Produce some physics results

Phase 2 highlights: beam properties verifications

Vertical size of the beam (σy*):
 obtained using vertical offset scans of the beams at the IP, corresponding to luminosity scans as a function of the vertical offset

(→ less than 500 nm achieved)

Interaction region size (z₀):
 longitudinal component of the interaction vertex estimated using z₀ parameter of single tracks originating from the interaction vertex
 (→ Beam spot ~ 10 times smaller than KEKB)

Phase 2 highlights: impact parameter resolution

- Resolution of the transverse impact parameter (d₀)
- Belle II MC events with a single muon tracks compared with results of Belle cosmic events

Phase 2 highlights: impact parameter resolution

- Resolution of the transverse impact parameter (d₀) using bhabha events
 - measured12.1 μm, expected ~10 μm
 - PXD is crucial

QUARKONIA:

legacy of 1st generation

B-Factories

the next generation B-Factory

- · Charmonium (-like) production
- · Bottomonium (-like): above Y(45)
- · Bottomonium (-like): below Y(45)

14

PAST

PRESENT

FUTURE

Charmonia: ISR

Competition from BESIII

 Recent BESIII scan data show a complex landscape: scan of all decay channels is needed!

→ Belle II

- Higher effective luminosity
- Wider mass range

Charmonia: double charmonium production

Observed in combinations of J=1 and J=0
 e+e⁻ → cc̄ (0+/-) cc̄ (1-/+)

only at Belle II

→ Belle II

- angular distributions, production
- probe for new states

 The current upper limit on the width of the X(3872) width is the 90% C.L. of Γ_{X(3872)} < 1.2 MeV, obtained using the mode B → J/ψ π+π-K

- A way to improve the sensitivity of the X(3872) total width is to improve the mass resolution
- B \rightarrow D⁰D⁰ π ⁰ good mode to improve the mass resolution
- The sensitivity has been estimated on MC (H. Hirata, master thesis, 2019)

- A way to improve the sensitivity of the X(3872) total width is to improve the mass resolution
- B \rightarrow D⁰D⁰ π ⁰ good mode to improve the mass resolution
- The sensitivity has been estimated on MC (H. Hirata, master thesis, 2019)

- A way to improve the sensitivity of the X(3872) total width is to improve the mass resolution
- B \rightarrow D⁰D⁰ π ⁰ good mode to improve the mass resolution
- The sensitivity has been estimated on MC (H. Hirata, master thesis, 2019)

FAIRNESS2019 - Bianca Scavino

 With the full Belle II data sample (50 ab-1):

90% C.L.: ~ 180 KeV

3s significance: ~280 KeV

5s significance: ~570 KeV

Bottomonia: motivation for non-Y(45) running

⇒ above Y(4S):

- conventional state search
- exotica discovery
- precision Z_b mass measurement
- 1 ab⁻¹ @Y(5S): also B_s physics
- $100 \text{ fb}^{-1}@Y(6S) + \sim 400 \text{ fb}^{-1} \text{ scan}$

Current samples in fb⁻¹ (millions of events)

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	Υ(3S)	$\Upsilon(4S)$	Υ(5S)	Υ(6S)	$\frac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII			300(1200)	5x10 ⁴ (5.4x10 ⁴)	1000(300)	100+400(scan	3.6%

Y(55) runs: Zb masses (precision study)

- open question: are Z_b masses below or above B^(*)B* thresholds?
- fundamental question to understand their nature

→ Belle II

- 1 ab⁻¹ @ Y(5S): determine if they are located above or below the open threshold

estimate of the Z_b location with respect to the thresholds:

$$\varepsilon_B(Z_b) = (0.60^{+1.40}_{-0.49} \pm i0.02^{+0.02}_{-0.01}) \text{ MeV},$$

 $\varepsilon_B(Z_b') = (0.97^{+1.42}_{-0.68} \pm i0.84^{+0.22}_{-0.34}) \text{ MeV},$

$$\varepsilon_B(Z_b) \equiv M(B\bar{B}^*) - M(Z_b),$$

$$\varepsilon_B(Z_{b'}) \equiv M(B^*\bar{B}^*) - M(Z_{b'}),$$

High energy scans: resolve new states (Zb+)

PRL 117, 142001 (2016)

- Belle energy scan, search for Y(6S)→π+ π- h_b(1P,2P) decay
- observation of Z_b(106XX) state, but unable to resolve them

→ Belle II

- Understand Y(6S)→ Z_b decay
 - Y(6S) → $\pi^+ \pi^- h_b(1P,2P)$
 - Y(6S) → $\pi^+ \pi^- Y(1S,2S,3S)$

Bottomonia: motivation for non-Y(45) running

⇒ below Y(4S):

- bottomonium studies/searches
- new physics in decays (DM / light Higgs)
- anti nucleon production (possible DM application)
- baryon physics
- 300 fb⁻¹ @Y(3S): order of magnitude increase

Current samples in fb⁻¹ (millions of events)

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	Y(5S)	$\Upsilon(6S)$	$\frac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII			300(1200)	5x10 ⁴ (5.4x10 ⁴)	1000(300)	100+400(scan)	3.6%

Y(35) runs: (Anti)deuteron

PRD 62, 043003 (2000) Phys. Rev. D89 (2014) no.11, 111102

Process	Rate
$\mathcal{B}(\Upsilon(3S) \to \bar{d}X)$	$(2.33 \pm 0.15^{+0.31}_{-0.28}) \times 10^{-5}$
$B(\Upsilon(2S) \rightarrow \bar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-5}$
$B(\Upsilon(1S) \rightarrow \bar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-5}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 \text{ GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01})$ fb
$\frac{\sigma(e^+e^- \rightarrow \bar{d}X)}{\sigma(e^+e^- \rightarrow \text{Hadrons})}$	$(3.01 \pm 0.13^{+0.37}_{-0.31}) \times 10^{-6}$

- d in cosmic rays have long been considered a probe for supersymmetric relics in the galactic halo
- d production described with coalescence models tuned on HEP data
- need to further constrain in the production model
- → CLEO and Babar measured the d̄ spectrum (no dedicated PID or tracking)

→ Belle II:

- dedicated tracking and PID
- collect $\sim 3x10^4 \,\overline{d}$ in 300 fb⁻¹
- world's best estimate of coalescence parameter
- search for excited nucleons (d*)
- dd associated production

Y(35) runs: A-A interaction

→ From Belle:

- No sign of weakly bound H dibaryon
- Near threshold enhancement in exclusive annihilations Y(1S,2S) → Λ Λ X (still not published)

→ Belle II

- search for H dibaryon in missing mass $(Y(3S) \rightarrow \Lambda \overline{\Lambda} H + hadrons)$
- high statistics study near threshold

Rough extrapolation to 300 fb⁻¹ Y(3S) \sim 60 Million events with one Λ or Λ \sim 3 Million events with one Λ Λ pair

Summary

- We have entered the post B-factory era:
 - Variety of states in the quarkonium spectroscopy
 - Exotic states
- Belle II will collect 50 times more statistics than Belle, mainly but not only @ the Y(4S) resonance
- Belle II ended a successful Phase 2 commissioning run and just entered in the physics run era
- A variety of quarkonium studies will be possible, and among theme some unique topics:
 - charmonium: double charmonium
 - bottomonium: Belle II is in a unique position to address the open topics in this field

For further details about Belle II physics prospects see the Belle II Physics Book

arXiv:1808.10567 [hep-ex]

BACKUP

KEKB VS SuperKEKB

parameters	KEKB		SuperKEKB		units	
parameters	LER	HER	LER	HER	uiits	
beam energy	Еь	3.5	8	4	7	GeV
CM boost BY		0.425		0.28		
half crossing angle Ψ		П		41.5		mrad
horizontal emittance	ε _x	18	24	3.2	4.6	nm
emittance ratio	K	0.88	0.66	0.37	0.40	%
beta-function at IP	β_x*/β_y*	1200/5.9		32/0.27	25/0.30	mm
beam currents	lь	1.64	1.19	3.6	2.6	Α
beam-beam parameter	ξ _γ	129	90	0.0881	0.0807	
beam size at IP σ_x^*/σ_y^*		100/2		10/0.059		μm
Luminosity &		2.lxl0 ³⁴		8x10 ³⁵		cm ⁻² s ⁻¹

Nano beam scheme

From Belle to Belle 11

New challenges

- → x40 luminosity:
 - x40 produced signal events
 - Higher background (detector occupancy, fake hits, radiation damage)
 - Higher event rate (trigger rate, DAQ, computing)
- → Important to have a dedicated phase for background studies, detector response and alignment

Tracking

"Exotic and conventional Quarkonium physics prospects at Belle 11"

Quarkonium production at B-factory

B decays

Initial State Radiation(ISR)

Two γ interaction

Double charmonium production

Charmonia: overview

- Competition from LHCb (B decays) and BESIII (scans for 1-- states)
- Exploit different production methods

Charmonia: B decay

Competition from LHCb

Phys. Rev. Lett. 118, 022003 (2017) Phys. Rev. D 95, 012002 (2017)

LHCb amplitude analysis of B → J/ψ φ K

Belle II • e+e- B-factories only:

3.55

Charmonia: B decay

Competition from LHCb

Phys. Rev. Lett. 118, 022003 (2017) Phys. Rev. D 95, 012002 (2017)

LHCb amplitude analysis of B → J/ψ φ K

• e+e- B-factories only:

Competitive with LHCb exclusive reconstruction only for:

- hadronic transitions with π^0 , η , ω in final state
- states decaying with large multiplicities

• The current upper limit on the width of the X(3872) width is the 90% C.L. of $\Gamma_{X(3872)}$ < 1.2 MeV, obtained using the mode B \rightarrow J/ ψ π + π -K

Prospects in baryon spectroscopy

- Baryon spectroscopy is in general more complicated than quarkonia but exotic candidates exists even in the first excited states
- Excited spectrum is not well understood
- Belle still actively publishing

→ Belle II

- measure quantum numbers for excited charmed baryons
- search for excited baryons in charmed baryon decays
- search for exotic candidate states

Belle, PRL 9122, 072501 (2019)

Coalescence model for anti-deuteron production

Anti-deuteron production is described by p-n coalescence models tuned on the HEP data

Most recent data are from Alice

- Large final state
- MC-driven correction

$$\frac{dN_{\bar{d}}}{dT_{\bar{d}}} = \left(\frac{p_0^3}{6k_{\bar{d}}} \frac{m_{\bar{d}}}{m_{\bar{p}}m_{\bar{n}}} \frac{dN}{dT_{\bar{p}}} \right)^{**} \frac{dN}{dT_{\bar{n}}} |^{**}$$

where $T_i = E_i - m_i$ is the kinetic energy of $i = \bar{d}, \bar{p}, \bar{n}$ and the |**| notation recalls that the \bar{p} and \bar{n} spectra must be evaluated at $T_{\bar{p}} = T_{\bar{d}}/2$ and $T_{\bar{n}} = T_{\bar{d}}/2$, respectively (as dictated by Eq. (2.14)). In deriving Eq. (2.19), we have clearly assumed $m_{\bar{p}} = m_{\bar{n}} = m_{\bar{d}}/2$.