

Gagan Mohanty

International Workshop on frontiers in high energy physics FHEP 2019

14 -17 October 2019, Hyderabad, India

Provides a unique probe to unravel deeper mysteries of universe with intense sources and highly sensitive detectors

First-generation e⁺e⁻flavor factories

Success culminated in 2008 Nobel prize in Physics
 Rich legacy left for next-gen expt. EPJ C74, 3026 (2014)

So, why another e⁺e⁻flavor factory?

- □ Precision CKM metrology \rightarrow Standard Model (SM) candle
- $\square New CP violating phase? \rightarrow CP violation in B and D decays$
- ❑ Any imprint of new physics in FCNC transitions? → radiative and electroweak penguin decays
- □ How about charged Higgs boson? → study tree-level *B* decay to $\tau \nu$ or $D^{(*)}\tau \nu$ final state
- New physics in tau sector
 search for lepton flavor violating (LFV) tau decays
- □ Can we probe dark matter from bottom? → hidden dark sector (C. Hearty)

We also a superKEKB will address these questions with almost two orders of magnitude larger dataset than Belle+BABAR

Snapshots of what $\frac{2}{2}$ can achieve?

Observables	Expected the. accu-	Expected	Facility (2025)			
	racy	exp. uncertainty		From Belle II physics		
UT angles & sides			_			
ϕ_1 [°]	***	0.4	Belle II	book arXiv:1808.10567		
ϕ_2 [°]	**	1.0	Belle II			
φ ₃ [°]	***	1.0	LHCb/Belle II	(to appear in PTEP)		
$ V_{cb} $ incl.	***	1%	Belle II			
$ V_{cb} $ excl.	***	1.5%	Belle II	Precision CKM metrology		
$ V_{ub} $ incl.	**	3%	Belle II	57		
$ V_{ub} $ excl.	**	2%	Belle II/LHCb			
CP Violation			٦			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II	Direct and mixing_induced		
$S(B \rightarrow \eta' K^0)$	***	0.01	Belle II	Direct and mixing-induced		
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II	CP violation in R decays		
$\mathcal{A}(B \to K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II	ci violationin D accays		
(Semi-)leptonic			,	_		
$\mathcal{B}(B \to \tau \nu) [10^{-6}]$	**	3%	Belle II			
$\mathcal{B}(B \to \mu \nu)$ [10 ⁻⁶]	**	7%	Belle II	(Somi)lontonic R docave		
$R(B \rightarrow D\tau\nu)$	***	3%	Belle II	(Senii-Jieptonic D decays		
$R(B \rightarrow D^* \tau \nu)$	***	2%	Belle II/LHCb			
Radiative & EW Penguins			,	_		
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II			
$A_{CP}(B \rightarrow X_{*} q\gamma) [10^{-2}]$	***	0.005	Belle II			
$S(B \to K_s^0 \pi^0 \gamma)$	***	0.03	Belle II	Radiative & electroweak		
$S(B \to \rho \gamma)$	**	0.07	Belle II			
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II	penguin decays		
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II			
$R(B \to K^*\ell\ell)$	***	0.03	Belle II/LHCb			
Charm			,	-		
$\mathcal{B}(D_s \to \mu\nu)$	***	0.9%	Belle II			
$\mathcal{B}(D_s \to \tau \nu)$	***	2%	Belle II			
$A_{CP}(D^0 \to K_s^0 \pi^0) \ [10^{-2}]$	**	0.03	Belle II	Vibrant charm program		
$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$	***	0.03	Belle II			
$A_{CP}(D^+ \to \pi^+ \pi^0) \ [10^{-2}]$	**	0.17	Belle II			
Tau			•	-		
$\tau \rightarrow \mu \gamma \ [10^{-10}]$	***	< 50	Belle II	Search of LEV/ tau docaus		
$\tau \rightarrow e\gamma \ [10^{-10}]$	***	< 100	Belle II	Jearch of Liviau ueldys		
$\tau \rightarrow \mu \mu \mu $ [10 ⁻¹⁰]	***	< 3	Belle II/LHCb			

KEKE : New Intensity Frontier machine

KEKB

 \Box Targets to deliver e⁺e⁻ collisions at a peak luminosity of 8 × 10³⁵ cm⁻²s⁻¹, 40 times that of KEKB

- ♦ Increase beam currents twice
- ♦ Reduce beam size by 20 times

SuperKEKB

How far have we gone?

- **a** Reached β_{γ}^* = 33 mm in 2018
- ❑ Went down β^{*}_y = 2 mm by end Ξ of Summer 2019 (with Belle II off) → starting point for fall run
- Design luminosity requires one more order-of-magnitude jump to $\beta_y^* = 0.3 \text{ mm}$

- Phase 1 (2016): single beam background study
 Phase 2 (2018): beam commissioning (establish nano-beam scheme, reach the KEKB luminosity, and measure beam backgrounds) as well as for doing some physics with partial vertex detector
- Phase 3 (2019 ...): physics run with complete vertex detector

Currents achieved: 880 (940) mA for e⁺ (e⁻) beam → need 3 (4)× scale up

computing

Two detector highlights

Barrel PID (imaging TOP): Japan, US, Slovenia and Italy

Example of Cherenkov-photon paths for 2 GeV pion and kaon traversing in a TOP quartz bar

Quartz bar (length = 2600 mm, width = 450 mm, thickness = 20 mm)

VXD (6 layer Si for vertexing & inner tracking)

Beam-pipe r = 10 mmDEPFET pixels: Germany, Czech Republic, Spain... Layer 1 r = 14 mmLayer 2 r = 22 mm (2/12 now, rest in 2020)DSSD (double sided micro-strips) Layer 3 r = 38 mm (Australia)Layer 4 r = 80 mm (India)Layer 5 r = 115 mm (Austria)Layer 6 r = 140 mm (Japan)

A bit on the SVD-L4 project

Let the design, prototyping and construction of SVD layer-4

Sensor	ΔΧ	ΔΥ	ΔZ	
	(µm)	(µm)	(µm)	
Backward	-49	-35	-34	
Central	-6	-15	-22	
Forward	-7	-47	94	

Design specs: $\pm 150 \mu m (\Delta X, \Delta Y), \pm 200 \mu m (\Delta Z)$

Cluster charge, P-side:N-side

Cluster charge [n side] e

Had to pass through several stages of a stringent international technical review and grapple with multiple challenges; finally delivered 12 SVD-L4 modules
 8 students (3 outside TIFR) and 1 postdoc have been trained in this project

Early rediscovery at phase-2

We also found *B* mesons...

13

Going from phase-2 to phase-3

dE/dy

CDC dE/dx performance

- hadronic events - tracks from IP

- **Obtained with early** calibrations in the hadronic event sample
- Key to identify the charged particles, especially at low momentum

Charged kaon-pion separation

- Provided by the PID system: mainly TOP & ARICH; CDC also helps
- \Box Performance is tested with $D^{*+} \rightarrow D^0[K^-\pi^+]\pi_s^+$ decay, where the slow pion tags the flavor of D^0 meson as well as identifies its daughter kaons: and pions kinematically

 D^0 extrapolated production point beam spot

Some MC simulations yet to include embedded random triggers to correctly represent beam background effects and electronic noise

Electron and muon identification

Measurement of D^0 lifetime

- □ Use the self-tagging decay channel $D^{*+} \rightarrow D^0[K^-\pi^+]\pi_s^+$
- Fit the full decay chain imposing D⁰ mass constraint and D* production to measured beam spot region
- Constitutes a powerful test for the vertex fitting performance

 D^0 extrapolated production point beam spot

Warming up for charm physics

 Going from cleaner to not-so cleaner ones (in clockwise)

A picture for the office door

Getting ready for

- Samples are being made available for time-dependent CP violation study
- $\Box \Delta E \text{ is the difference} \\ between E_{beam} \text{ and} \\ E_B^*$

rightarrow "Golden channel" for the CKM angle $\phi_1 \equiv \beta$

21

Study of charmed **B** decay

ΔE distributions for B[±] → Dh[±] decays with D → K⁻π⁺, K⁻π⁺π⁰, K⁻π⁺π⁻π⁺
 Demonstrate importance of PID at high

momentum towards improving the S/B ratio

This kind of decay channels will be essential to measure the CKM angle $\phi_3 \equiv \gamma$

Major Indian contribution

Rediscovery of radiative

Distributions of M_{bc} for: $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \gamma$ $B^+ \rightarrow K^{*+} (\rightarrow K^+ \pi^0) \gamma$ $B^+ \rightarrow K^{*+} (\rightarrow K^0_S \pi^+) \gamma$

Just made the beginning

	signal yield (statistics only)	significance	
$B^0 \to K^{*0} (\to K^+ \pi^-) \gamma$	19.1 ± 5.2	4.4σ	
$B^+ \to K^{*+} (\to K^+ \pi^0) \gamma$	9.8 ± 3.4	3.7 σ	
$B^+ \to K^{*+} (\to K^0_S \pi^+) \gamma$	6.6 ± 3.1	2.1 σ	

Novelty: full event interpretation

FEI performance with early 2019 data

Prospects for data & physics harvesting

Prospects for detector improvements

Short term:

- Replace the conventional with atomiclayer-deposition (ALD) MCP-PMTs for the TOP counters
- Complete installation of PXD layer-2
- DAQ upgrade

Medium term:

Looking at options for making the detector more resilient against beaminduced background and radiation bursts

🖵 Longer term: 🚺

Closing words

- □ Belle II has started to probe new physics beyond the SM at the intensity frontier → complementary to high- p_T programs of ATLAS and CMS
- □ As for LHCb, there is healthy competition and complementarity between the two experiments
- □ 1st physics run in Spring 2019 has completed delivering ~6.5 fb⁻¹→ fall run is about to begin
- Detector and machine initial performances have been good; we expect the road ahead to be bit long before achieving our design goal

Additional information

Comparison: KEKB vs. SuperKEKB

narawatara	KEKB		SuperKEKB		mite	
par ameter s	LER	HER	LER	HER	07113	
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	¢	11		41.5		mrad
Horizontal emittance	Ex	18	24	3.2	4.6	nm
Emittance ratio	к	0.88	0.66	0.37	0.40	7.
Beta functions at IP	β x*/βy*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	lb	1.64	1.1 9	3.60	2.60	A
beam-beam parameter	ξγ	0.1 29	0.090	0.0881	0.0807	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Beam backgrounds

e⁺e⁻ colliders are clean, however at high L_{peak} values beam backgrounds can become a challenge

At the highest luminosities, QED processes e.g., $e^+e^- \rightarrow e^+e^-(\gamma)$ and $e^+e^- \rightarrow e^+e^-e^+e^-$ dominate

Currently, single beam backgrounds are dominant, larger for the e⁺ beam

- beam-gas (residual gas in beam-pipe)
- Touschek (intra-bunch scattering)
- injection-induced
- "dust events" (occasional large losses)
- CDC HV trips with large background
- Beam abort protection against spikes due to radiation
- Simulation and collimator studies