B Leptonic Decays: Results at Belle and prospects at Belle II

Eiichi Nakano (Osaka City University, NITEP) on behalf of Belle II collaboration Particle Physics and Cosmology in The 2020, BNL (Sep. 25-27, 2019)

Introduction

.

• B meson leptonic decay : test the validity of the Standard Model of particle physics

$$Br(B^{+} \rightarrow \ell^{+}\nu_{\ell}) = \frac{G_{F}^{2}m_{B}m_{\ell}^{2}}{8\pi} \left(1 - \frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} |V_{ub}|^{2} \tau_{B}^{2} \qquad B^{+} \begin{cases} b & W^{+} & W^{+} & W^{+} \\ u & \nu_{\mu} & W^{+} & W^{+} & W^{+} \\ u & \nu_{\mu} & W^{+} & W$$

- f_B : determined by non-perturbative methods
- $Br(B^+ \to \mu^+ \nu_\mu) = (6.6 \pm 2.2 \pm 1.6) \times 10^{-7}$ (Belle 2018, Phys. Rev. Lett. 121, 031801 (2018))

- improved search for $B^+ \to \mu^+ \nu_\mu$ than previous our publish (Phys. Rev. Lett. 121, 031801 (2018))
- SM calculation with $f_B = 184 \pm 4 \text{ MeV}$
 - $Br(B^+ \to \mu^+ \nu_{\mu}) = (4.3 \pm 0.8) \times 10^{-7}$ (inclusive PDG $|V_{ub}| = (4.49 \pm 0.16_{(\text{stat.})} + 0.16_{(\text{sys.})} \pm 0.17_{(\text{theo.})}) \times 10^{-3})$
 - $Br(B^+ \to \mu^+ \nu_{\mu}) = (3.7 \pm 0.4) \times 10^{-7}$ (exclusive PDG $|V_{ub}| = (3.67 \pm 0.09 \pm 0.12) \times 10^{-3}$)
 - ~300 events in full Belle data set at $\Upsilon(4s)$ (= 711 fb⁻¹)
 - sensitive to new physics
 - charged Higgs
 - · LQ
 - sterile neutrino

B tagging in Belle

- inclusive tag : consistent with B meson
 - eff. = O(10%) : important in this case
 - low purity
- semi-leptonic tag : partial know B meson
 - eff. = O(1%)
 - moderate purity
- hadronic tag : exactly know B meson
 - eff. = O(0.1%)
 - high purity

KEKB accelerator

- 8 GeV e-/3.5 GeV e+
- operated during 1999 2010
- 711 fb⁻¹ at $\sqrt{s} = 10.58$ GeV ($\Upsilon(4s)$ resonance)
- 79 fb⁻¹ at 40 MeV below (off-resonance data)

Belle detector

- charged tracking
 - SVD + CDC
- neutral cluster
 - ECL
- muon ID •
 - KLM
- electron ID
 - ECL/CDC/ACC

Analysis strategy

- overall correction factor ζ is also applied

$$\left(\mathbf{p}_{\text{tag,cal}}^{*}\right)_{z} = \zeta f\left[\left(\mathbf{p}_{\text{tag}}^{*}\right)_{z}\right] \qquad \left(\mathbf{p}_{\text{tag,cal}}^{*}\right)_{T} = \zeta \sqrt{\left(\mathbf{p}_{\text{tag}}^{*}\right)^{2} - \left(\mathbf{p}_{\text{tag,cal}}^{*}\right)_{z}^{2}}$$

- calculate tag-side *B* meson three-momentum $\mathbf{p}^*_{tag,cal}$
- . signal side *B* meson momentum $\mathbf{p}_{sig} = -\mathbf{p}_{tag,cal}^*$
- muon : boost back to *B* rest frame
- improve resolution and sensitivity

continuum BG suppression

• normalized missing energy $\Delta \hat{E} = \left(E_{\text{tag,reco}}^* - \sqrt{s/2}\right)/(\sqrt{s/2})$, $E_{\text{tag,reco}}^*$: ROE momentum in c.m.s.

• signal : $\cos \Theta_{B\mu}$ dist. is flat

• BG : $\cos \Theta_{B\mu} \sim 1$

 $B^+_{sig.}$ direction in the c.m. system $\Theta_{B\mu}$ μ^+ direction in the B rest frame

- using C_{out} and $\cos \Theta_{B\mu}$: define 4 categories

four signal categories

Category	Cout	cosθ _{Bμ}	ε (signal)		
I		-0.13 ≦ cos⊖ _{Bµ} < 1.00	6.5%	signal	
II	$0.98 \ge C_{out} < 1.00$	$-1.00 \leq \cos \Theta_{B\mu} < -0.13$	5.9%	enriched	
		$0.04 \leq \cos \Theta_{B\mu} < 1.00$	7.1%	PC apriched	
IV	0.93 ≥ Cout <0.98	-1.00 ≦ cosθ _{Bμ} < 0.04	8.3%	bg ennched	

systematic uncertainties

- dominated by
 - $b \rightarrow u \ell \nu_{\ell}$ modeling
 - continuum modeling
 - low statistics of offresonance data
- incorporated into likelihood function

source	uncertainty			
Additive				
$B^+ \rightarrow \mu^+ \nu_\mu$ MC statistics	1.0%			
$b \rightarrow u l v_l$ modeling	11%			
$b \rightarrow c l v_l$ modeling	2.5%			
Br($b \rightarrow s$) process	1.0%			
${\sf Br}(B^+ o \mu^+ u_\mu \gamma)$	0.02%			
Continuum modeling	13.3%			
Multiplicative				
N_{BB}	1.4%			
Tracking eff.	0.3%			
\mathcal{L}_{LID} eff.	2.0%			
total	17%			

- likelihood ratio contour
- expected #events : 117 ± 48

 $Br(B^+ \to \mu^+ \nu_{\mu}) = (5.3 \pm 2.0 \pm 0.9) \times 10^{-7}$

• significance over the BG : 2.8σ (SM expectation : $2.4^{+0.8}_{-0.9}\sigma$)

$$|V_{ub}| = \left(4.4^{+0.8}_{-0.9(\text{stat.})} \pm 0.4_{(\text{sys.})} \pm 0.1_{(\text{theo.})}\right) \times 10^{-3} \quad \clubsuit \quad f_B = 184 \pm 4 \text{ (MeV)}$$

- compatible with both inclusive and exclusive measurements (PDG) $|V_{ub}| = \left(4.49 \pm 0.16_{(\text{stat.})} + 0.16_{(\text{sys.})} \pm 0.17_{(\text{theo.})}\right) \times 10^{-3}$ $|V_{ub}| = \left(3.67 \pm 0.09 \pm 0.12\right) \times 10^{-3}$
- · low significance : set upper limit
- $Br(B^+ \rightarrow \mu^+ \nu_{\mu}) < 8.6 \times 10^{-7}$ at 90 % CL. (Frequentist)

2HDM : type II and type III

 $\tan \beta$: ratio of the vacuum expectation values of 2 Higgs fields

• more precise limit for type III than $B^+ \rightarrow \tau^+ \nu_{\tau}$

 $S_{R/L}$: sizes of new physics

 $Br^{SM} = (4.3 \pm 0.8) \times 10^{-7}$ $|V_{ub}| = (3.94 \pm 0.36) \times 10^{-3}$

search for
$$B^+ \to \mu^+ N$$

- $B^+ \rightarrow \mu^+ \nu_\mu$ contribution : fixed
- search excess in p^B_μ distribution

future prospects in Belle II

SuperKEKB : x40 luminosity of KEKB

Belle II upgraded for irradiation rate capability, data transfer

prospect of $B^+ \to \mu^+ \nu_\mu$ search

~2 ab⁻¹ (x3 of Belle) : > 3σ can be expected

Summary and Conclusions

- improved search of $B^+\to\mu^+\nu_\mu$ and $B^+\to\mu^+N$ using full dataset of Belle with inclusive tagging
- analysis is carried out in the approximative *B* rest frame of signal side *B*
- This results in better signal resolution and improved sensitivity than CM frame analysis
- Br is determined using binned maximum likelihood fit of muon momentum spectrum

•
$$Br(B^+ \to \mu^+ \nu_{\mu}) = (5.3 \pm 2.0 \pm 0.9) \times 10^{-7}$$
 (2.8 σ significance)

- $Br(B^+ \rightarrow \mu^+ \nu_{\mu}) < 8.6 \times 10^{-7}$ at 90 % CL . Frequentist
- limit to the type III 2HDM : most precise
- in near future, evidence or observation of $B^+ \rightarrow \mu^+ \nu_{\mu}$ process can be expected

spare

- $Br(B^+ \to \tau^+ \nu_{\tau})$
 - $(1.09 \pm 0.24) \times 10^{-4}$ (PDG average)
 - $[1.25 \pm 0.28(\text{stat.}) \pm 0.27(\text{syst.})] \times 10^{-4}$ Belle semileptonic tag PRD92, 051102 (2015), 222 ±50, 3.8 σ
 - $[0.72^{+0.27}_{-0.25}(\text{stat.}) \pm 0.11(\text{syst.})] \times 10^{-4}$ Belle hadronic tag PRL110, 131801 (2013), 62⁺²³-22(stat) ±6(syst), 3.0 σ
 - $[1.83^{+0.53}_{-0.49}(\text{stat.}) \pm 0.24(\text{syst.})] \times 10^{-4}$ BaBar hadronic tag PRD88, 031102 (2013), 62.1±17.3, 4.2 σ
 - [1.7 ± 0.8(stat.) ± 0.2(syst.)] × 10⁻⁴ BaBar semileptonic tag RPD81, 051101(2010), , 2.8σ

• Expected number of events in Belle II (Belle II P.B.)

	711 fb-1	5 ab-1	50 ab-1
	(Belle)	(Belle II)	(Belle II)
$B^+ ightarrow au^+ u_ au$	(612±50)x10 ²	(430±35)x10 ³	(430±35)x104
$B^+ o \mu^+ u_\mu$	275±23	1930±160	(193±16)x10 ²

- assuming
 - $Br(B^+ \to \tau^+ \nu_{\tau}) = (7.71 \pm 0.62) \times 10^{-5}$ and
 - $Br(B^+ \to \mu^+ \nu_{\mu}) = (3.46 \pm 0.28) \times 10^{-7}$ with
 - $|V_{ub}| = (3.55 \pm 0.12) \times 10^{-3}$ and $f_B = 186 \pm 4$ MeV
- 3σ significance is expected at ~2 ab⁻¹ for $B^+ \rightarrow \mu^+ \nu_{\mu}$ process

- compare continuum sim. & off-resonance data
- QED/Two-Photon 104 good agreement $ee \rightarrow q\bar{q}, q = \{u, d, s\}$ ee → cc Entries / (0.02) 10³ Signal Shape Off-Resonance Data • using C_{out} and $\cos \Theta_{Bu}$ $B_{sig.}^+$ direction in the c.m. system 10^{1} 0.0 0.2 0.4 0.6 0.8 1.0 μ^+ direction in the B rest frame $\mathcal{C}_{\mathsf{out}}$ $\Theta_{B\mu}$ 1e3 - signal : $\cos \Theta_{Bu}$ dist. is flat QED/Two-Photon Entries / (0.02 / GeV) 0.1 0.2 2.0 1.2 2.2 0.1 2.2 1.2 2.2 0.2 $ee \rightarrow q\bar{q}, q = \{u, d, s\}$ ee → cō Signal Shape • BG : $\cos \Theta_{Bu} \sim 1$ **Off-Resonance Data**

0.0

2.6

 p_{μ}^{B} / (GeV)

2.8

3.0

3.2

23

2.4

define 4 categories

Signal fitting

- simultaneous binned likelihood fit to the p_{μ}^{B} spectra of four categories
- total likelihood function

 $\mathcal{L} = \prod_c \, \mathcal{L}_c \, \times \prod_k \, \mathcal{G}_k$

- L_c : individual category likelihood (c: categories)
- G_k : systematics (k: BG components)
- $2.2 \le p_{\mu}^{B} < 3.3$ (GeV/c) : 22 bins (50 MeV/c each)

$b \to u \ell \nu_\ell$ control region

- test the simulation of crucial BG
- signal depleted region with moderate continuum contamination
 - $0.90 \le C_{\rm out} < 0.93$

•

- high p_{μ}^{B} region : validity for continuum description
- $2.2 < p_{\mu}^{B}$ (GeV/c) < 2.6 : dominated by $b \rightarrow u\ell \nu_{\ell}$ and $b \rightarrow c\ell \nu_{\ell}$

- $B^+ \rightarrow \mu^+ \nu_{\mu}$ yields : fixed to SM (~15 events each)
- templates describe data well
- Entries / (0.050 C 005 (0.050 C • $b \to c\ell\nu_{\ell}, b \to u\ell\nu_{\ell}$ and continu
- signal is floated : yield is -31+-61

.

 $Br(B \to X_{\rm u}\ell^+\nu_\ell) = (2.04 \pm 0.10 \pm 0.06) \times 10^{-3}$

Category I

2.8

 p_{μ}^{B} / (GeV)

 $\cos \Theta_{Bu} > 0$

2.6

500

2.2

2.4

(yag 400

 $Br(B \to X_{\rm u}\ell^+\nu_{\ell}) = (2.13 \pm 0.31) \times 10^{-3}$

Continuum

 $b \rightarrow c$ Rare

 $B \rightarrow \mu \nu \gamma$

3.2

b→u Signal sys. unc. Data

3.0

cumulative selection efficiencies

criteria	$B^+ o \mu^+ u_\mu$	$b \rightarrow u l v_l$	Continuum
BB & muon reco.	99%	10%	0.9%
ROE Presel.	55%	1.4%	0.03%
Cout cut	28%	0.2%	0.001%

off-resonance control region

- $\cdot 0.93 \le C_{\rm out} < 1$ of off-resonance data
- two components fit
 - signal yield : 1.8 ± 7
 - continuum yield : 37 ± 10