The Belle II Experiment: Status and Prospects

Kodai Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II collaboration

Belle II at SuperKEKB ()

Plan to collect 50 ab^{-1} of collisions at and near $\Upsilon(4S)$ Successor to Belle at KEKB (1.05 ab⁻¹)

At $\Upsilon(4S)$, $E_{CM} = 10.58 \text{ GeV}$

7 GeV e^- (HER; High Energy Ring)

Nano beam scheme

$$\mathcal{L} = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y} \right)$$

5.9 → 0.3 mm
KEKB SuperKEKB

- New physics search in B, B_s , D, τ decays
- Direct search for light new particles
- Precise measurement of Standard Model
- Hadron physics

Belle II detector

Superconducting solenoid (1.5 T)

Electromagnetic calorimeter CsI(TI), waveform sampling

K_L and μ detector

- Resistive plate chamber (outer barrel)
- Scintillator + MPPC

 (inner 2 barrel layers, end-caps)

Particle ID detectors

- TOP (Time-of-Propagation) counter (barrel)
- Aerogel RICH (forward end-cap)

Tracking detector

Drift chamber (He + C₂H₆) of small cell, longer lever arm with fast readout electronics

Silicon vertex detector

- 1→2 layers DEPFET (pixel)
- 4 outer layers DSSD

Better performance even at the higher trigger rate and beam background

Trigger and DAQ

Max L1 rate: 0.5→30 kHz Pipeline readout

GRID computing

Major detector issues in the operation

- Detector lifetime (in particular TOP counter)
 - To keep the MCP-PMT QE within an acceptable level (QE/QE $_0$ > 80%) until 50 ab $^{-1}$, the Touschek and beam gas backgrounds, which increase with (beam current) 2 , have to be kept constant by collimators, beam tuning, additional shielding, \cdots
 - → TOP PMT hit rate could limit the luminosity.
- Permanent damage on PXD and SVD by accidental huge beam loss.
- Synchrotron radiation from HER beam on PXD
 - → Should be carefully monitored not to irradiate PXD unnecessarily.

Operation status in 2020

■ SuperKEKB/Belle II was operated under Covid-19 pandemic while minimizing risk of infection: Closed space

Minimize person-to-person contact and avoid 3C

Crowded places
Close-contact settings

- Remote control room shifts and expert shifts
- Travel restrictions (~40 Belle II colleagues on-site)
- Online meetings
- Hygiene (face mask, alcohol disinfection, ventilation, …)

Accelerator operation summary → Talk by Y. Ohnishi

Integrated luminosity

Belle II data taking efficiency has been improved to 84%.

✓ Less DAQ errors and more prompt recovery from the errors by

experts' consistent effort

✓ Error analysis and monitor by ELK (Elasticsearch Logstash Kibana)

- ✓ More experienced shifters
- ✓ Controlled injection veto dead time (avg. 4.9%) as a result of injection background studies

Data analyses to be shown in ICHEP2020

Performance assessment for the flavor physics program

- B^0 lifetime \rightarrow Talk by C. Praz
- B flavor tagger → Talk by N. Rout
- Reconstruction of (semi-)leptonic B decays with FEI → Talk by M. Milesi
- Search for $B \to K\ell\ell, X_s\ell\ell$
 - → Talk by Y. Sato
- D^0 lifetime, D, D_s, Λ_c reconstructions
 - → Talk by G. Casarosa

Outset of flavor physics measurements

(Need more statistics for publication)

- $\mathcal{B}(\bar{B}^0 \to D^{*+}\ell^-\bar{\nu})$, V_{uh} and V_{ch}
 - → Talk by R. Cheaib; poster by S. Granderath
- \mathcal{B} and A_{CP} of charmless B decays
 - → Talk by E. Ganiev
- f_L in $B \to \phi K^* \to \text{Talk by N. Rout}$
- τ-lepton mass → Talk by K. Inami

Dark sector | with the data taken in 2018

→ Talk by E. Graziani

• Z' or LFV Z' to invisible

0.276 fb⁻¹; PRL 124 (2020) 141801

1st Belle II physics paper

Axion Like Particle

0.445 fb⁻¹; Being submitted to PRL

2nd Belle II physics paper

Physics publication prospects in near future

■ 140-240 fb⁻¹ until Mar 2021 (depending on the operation budget)

Flavor physics

- $|V_{cb}|$ from hadronic q^2 moments
- Inclusive $|V_{ub}|$ from lepton endpoint
- Inclusive and FEI tagged $b \rightarrow s\gamma$
- Inclusive $B^+ \to K^+ \nu \nu$
- B⁰ lifetime and mixing
- 1st combined Belle + Belle II analysis on BPGGSZ ϕ_3
- D^0 , D^+ , D_s , Λ_c lifetimes
- $B \to \Lambda_c$ + invisible
- τ-lepton mass measurement
- τ → ℓ + invisible(α) search
 → Talk by F. Tenchini

Dark sector

Dark higgstrahlung

- Visible dark photon
- Z' or LFV Z' to invisible update
- $Z' \rightarrow \mu\mu$
- Inelastic dark matter
- Dark scalar
- • •
- ab⁻¹ before long shutdown in 2022 to surpass BaBar and Belle
 → Belle II will join in with the hunting for New Physics in earnest.

Projection toward 50 ab⁻¹

Recently updated based on the past results.

Summary

- Belle II plans to collect 50 ab⁻¹ to extensively search for New Physics in the flavor and dark sectors as well as to provide better understanding of the Standard Model and hadron physics.
- Accelerator and detector operation is in good shape: the world record of the peak luminosity
 2.4 x 10³⁴ /cm²/s (KEKB record: 2.1 x 10³⁴ /cm²/s) was achieved with the acceptable beam background level.
- Collected 74 fb⁻¹, and 1st physics paper on dark sector was published, to be followed soon by other results on dark sector and flavor physics.
- In a few years, Belle II will join in with the hunting for New Physics in earnest.