Dark-sector physics at Belle II

26th International Symposium on Particle Physics, String Theory, and Cosmology (PASCOS2021)

15.06.2021

Savino Longo on behalf of the Belle II Collaboration

savino.longo@desy.de

Deutsches Elektronen-Synchrotron (DESY)

Exploring Dark Sectors with Belle II

- Next generation B-Factory operating at SuperKEKB asymmetric e^+e^- collider.
 - $-\sqrt{(s)} = 10.58$ GeV corresponding to $\Upsilon(4S)$ resonance.

➡ Targeting 50 ab⁻¹ dataset this decade.

• Exploring **Dark Sectors** at the luminosity frontier:

Precision Measurements and Rare Decays: $e^+e^- \rightarrow X_{SM}$ $B/D/\tau \rightarrow X_{SM}$

The Belle II Detector

Novel vertexing:

- 2 layer DEPFET pixel detector
- 4 layer double sided silicon strips

New Drift Chamber:

- Larger volume, smaller cells, new electronics

New charged particle identification detectors:

- Barrel: Time-of-Propagation
- Backward Endcap: Cherenkov-based

Upgraded CsI(TI) Calorimeter:

- Improved timing
- Pulse shape discrimination

DESY. Savino Longo (savino.longo@desy.de)

New K_L^0/μ detectors

- Inner Barrel/Endcaps: scintillating strips
- Outer Barrel: Resistive Plate Counters

Superconducting 1.5 T Magnet

~ 7 m

Belle II Dataset and Dark Sector Triggers

- Since first collisions in 2018, total dataset integrated to-date of 180 fb⁻¹.
 - →World record instantaneous luminosity achieved by SuperKEKB (2.9×10^{34} cm⁻²s⁻¹).
- New "Dark Sector" triggers make this dataset world-unique.

Invisibly Decaying Z' Boson

• Z' boson - vector portal mediator between Dark Sector and Standard Model.

→ Dark Matter,
$$(g - 2)_{\mu}$$
, $b \rightarrow s\mu^{+}\mu^{-}$.

- Consider scenario:
 - \rightarrow Z' coupling only to 2nd and 3rd generation leptons ($L_{\mu} L_{\tau}$ model).
 - \rightarrow Z' decays primarily as $Z' \rightarrow \chi \overline{\chi}$ (invisible)
- Hermetic Belle II detector and clean e^+e^- collisions allow precision determination of missing energy!

5

Invisibly Decaying Z' Boson Search

- Signal would produce narrow peak in distribution of recoil mass computed from $\mu^{\pm}\mu^{\mp}(LFV: \mu^{\pm}e^{\mp})$.
- Dominant backgrounds:

 $e^+e^- \rightarrow \tau^+\tau^-$: τ 's decay single prong, missing energy from neutrinos.

 $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$, photon is undetected.

• No significant excess observed in either search.

Z' Boson Limits and Exclusions

- 90% CL upper limits set on Z'-SM coupling (g') excluding strengths from 1 down to $5 imes10^{-2}$.
- LFV search sets first model independent limits on the $\epsilon \times \sigma[e^+e^- \to e^\pm \mu^\mp$ invisible] down to 10 fb.
- Results published: <u>I. Adachi et al. (Belle II Collaboration) Phys. Rev. Lett. 124, 141801</u>

Axion-Like Particles (ALP)

- GeV-scale ALPs (*a*) pseudoscalar portal mediator between Dark Sector and Standard Model.
- If ALP-photon coupling $(g_{a\gamma\gamma})$ dominates, $B(a \rightarrow \gamma\gamma) \approx 100 \%$.
- Search targets mass region where ALP decay is prompt and photons can be well resolved by Belle II.

DESY. Savino Longo (savino.longo@desy.de)

M. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer & K. Schmidt-Hoberg, J. High Energy Phys. 12, 094 (2017).

Searching for Axion-Like Particles

- Select events that have three photons with invariant mass consistent with the collision \sqrt{s} .
- Search for narrow peak in $M^2_{\rm recoil}$ or $M^2_{\gamma\gamma}$ (optimized for ALP resolution)
 - Largest background from $e^+e^- \rightarrow \gamma \gamma(\gamma)$

ecoil

ALP Search Results

- Search spanned $0.2 < m_a < 9.7 \text{ GeV}/c^2$.
- No significant excess observed.
 - -Largest local significance at $m_a = 0.477 \text{ GeV}/c^2$ corresponding to 2.8 σ .

Exclusion on ALP-Photon Coupling

- Upper limit (95% CL) set on ALP-photon coupling reaching below 10^{-3} .
 - → Limits exceed recast from $e^+e^- \rightarrow \gamma\gamma$ analysis by LEP-II.
- Results published: <u>F. Abudinén et al. (Belle II Collaboration) Phys. Rev. Lett. 125, 161806 (2020)</u>

$$\sigma_{a} = \frac{g_{a\gamma\gamma}^{2}\alpha_{\text{QED}}}{24} \left(1 - \frac{m_{a}^{2}}{s}\right)^{3} \qquad \overbrace{b}^{10^{-3}}_{5} \underbrace{f_{0}^{-4}}_{10^{-3}} \underbrace{g_{a\gamma\gamma}^{2}\alpha_{\text{QED}}}_{10^{-4}} \underbrace{g_{a\gamma\gamma}$$

Inelastic Dark Matter

• Expanded Dark Sector with two Dark Matter states:

 χ_1 - Relic DM

χ_2 - Long-lived particle

► Decays as $\chi_2 \rightarrow \chi_1 l^+ l^-$, $l^\pm = SM$ fermion

• Vector portal coupling to SM via Dark Photon, A', mediator.

DESY. Savino Longo (savino.longo@desy.de)

M. Duerr, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg & P. Tunney. J. High Energ. Phys. **2020**, 39. M. Duerr, T. Ferber, C. Garcia-Cely, C. Hearty & K. Schmidt-Hoberg. J. High Energ. Phys. 2021, 146.

Belle II Simulation 12 Signal Event $\chi_2 \to \chi_1 l^+ l^-$ **Initial state** radiation photon

Inelastic Dark Matter Search

Background suppression using leptons from displaced χ_2 decay vertex.

• Missing energy in
$$\chi_2 \to \chi_1 l^+ l^-$$
 allows for suppression of $\gamma \to e^+ e^-$
and $K_S^0 \to \pi^+ \pi^-$.

Search for peak in recoil mass of ISR photon.

 $lpha_{PA}$ V^0 momentum vector Vector connecting V^0 vertex to interaction point

13

Inelastic Dark Matter Prospects

- With current Belle II dataset expect to probe Dark Sector-Standard Model couplings down to $10^{-3} 10^{-4}$.
- Search will also constrain extended iDM models featuring Dark Higg Bosons.

M. Duerr, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg and P. Tunney. J. High Energ. Phys. 2020, 39.M. Duerr, T. Ferber, C. Garcia-Cely, C. Hearty & K. Schmidt-Hoberg. J. High Energ. Phys. 2021, 146.

Conclusions

- The Belle II experiment is exploring Dark Sectors at the luminosity frontier.
- New Dark Sector triggers enabled to target unique low-multiplicity final states.
- World-leading limits published on Z' boson and ALP's:
 - ➡ I. Adachi et al. (Belle II Collaboration) Phys. Rev. Lett. 124, 141801 (2020)
 - F. Abudinén et al. (Belle II Collaboration) Phys. Rev. Lett. 125, 161806 (2020)
- New Inelastic Dark Matter analysis in progress, targeting expanded Dark Sectors with long-lived particles.

Thanks!

Extra Slides

$e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ Suppression in Z' Search

- Missing energy in signal arises from Z' radiation off a final state muon.
- In background missing energy arises from both tracks due to neutrinos in tau decays.
- This difference allows the lepton kinematics to be used to suppress backgrounds from $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$.

Future Reach of Z' Searches

ALP Resolution

FIG. 2. $M_{\gamma\gamma}^2$ and M_{recoil}^2 resolutions with uncertainty as a function of ALP mass m_a . The inset shows an enlargement of the low-mass region $m_a < 1 \,\text{GeV}/c^2$.

Projected Reach of Dark Photon Search

