Latest charm results from Belle II

Lake Louise Winter Institute 2022
Feb 25, 2022

Saroj Pokharel

spokhar1@go.olemiss.edu

The University of Mississippi (For the Belle II collaboration)

Outline

- Charm physics
- Introduction to Belle II and SuperKEKB
- Recent charm results
 - D^{0/+} lifetimes
- Future prospects
 - Charmed baryon lifetimes
 - CPV and charm mixing
- Summary and outlook

Charm physics

- It was the absence of flavor changing neutral currents (FCNC) that led GIM to propose a suppression mechanism which required the existence of a fourth quark, Charm, in 1970.
- Charm quark: third-heaviest of the six quarks.
- Charm particles can exist as open charm mesons or baryons and as hidden charm (charmonium as J/Ψ).
- Uniqueness of charm: only decays via weak decays, mediated by a W[±] boson, into a strange or down quark, except the decay of ground state charmonium mesons.
- With the first evidence of mixing of neutral charm mesons reported by BaBar and Belle in 2007, a lot of works has been going to precisely measure the mixing phenomenon and search for CPV in the charm sector.
- Time-integrated CP asymmetry for the decay of charm mesons are also one of the interesting topic in charm sector, that are vigorously being studied at Belle II.

$$A_{CP} = rac{(B(D
ightarrow f) - B(ar{D}
ightarrow ar{f}\,))}{(B(D
ightarrow f) + B(ar{D}
ightarrow ar{f}\,))}$$

SuperKEKB and Belle II

The Belle II experiment at the SuperKEKB asymmetric e⁺/e⁻ collider is designed to make precision measurements in flavor physics at the "intensity frontier"

- Low backgrounds with a known collision energy gives Belle II unique opportunities
- Design luminosity of SuperKEKB:
 6.5 x 10³⁵ cm⁻² s⁻¹
 (~40 times greater than KEKB)
- Target data set: 50 ab⁻¹
 (~50 times greater than Belle)

SuperKEKB New beam pipe for higher beam current Low emittance positron: to inject New positron target / Low emittance electron

Collected (so far): ~ 268 fb⁻¹

• 1,300,000 $car{c}$ events produced per 1 fb⁻¹

Achieved world record: 3.8 x 10³⁴ cm⁻² s⁻¹

Belle II detector

- Layers of detectors to enable precision charged particle tracking and particle identification.
- Just outside the interaction point (IP), upgraded vertex detectors:
 - 1 layer of pixel
 - 4 layers of double-sided silicon strips

Precise silicon vertex detectors help to pin point the decay vertex of the particles like the D⁰ and D⁺

D^{0/+} lifetimes

- Measurements of lifetimes are an essential test of non-perturbative QCD
- For charm hadrons, the expansion parameter in Heavy Quark Expansion (HQE) increases by a factor of 3, yielding much larger uncertainties
- In Belle II, precise lifetime measurements are possible because of:
 - Precise calibration of final state particle momenta
 - Excellent vertex detector alignment
 - 1st layer of silicon ensuring a narrow decay time resolution.

Do decay time [ps]

Most precise ratio to date: τ(D⁺)/τ(D⁰) = 30%.
 Belle II measurement has now improved it.

$$\langle d_{D^0} \rangle \sim 200 \,\mu m$$

 $\langle d_{D^+} \rangle \sim 500 \,\mu m$

Once the momentum of the D^{0/+} is determined, the production and decay vertex are used to calculate the decay time:

$$t=rac{m_D}{p}igg(\overrightarrow{d}.\,\hat{p}igg)$$

Sample for analysis

- $oldsymbol{\mathsf{D^0}}$ Reconstructed from K⁻ and π^+ with D* tagged $(D^0 o K^- \ \pi^+)$
 - Binned least square fit:
 - Signal yield: 171K
 - o Purity: 99.8%
 - Background: 0.2%
 - Background for D⁰: neglected in the life-time fit and systematic assigned
- D⁺ Reconstructed from K⁻, π⁺ and π⁺ with D* tagged $(D^+ \to K^- \pi^+ \pi^+)$
 - Binned least square fit:
 - o signal yield: 59K
 - o Purity: 90%
 - Background: 9%

Background for D⁺: included in the life-time fit, modeled using data sidebands

Fit strategy

 Lifetimes are determined with unbinned ML fits to decay time and decay time uncertainty (t,σ,) of the candidates in the signal region

 Absolute measurement of lifetime: World's most precise D⁰ and D⁺ lifetimes to date

PDF: Exponential, convolved with a resolution function:

$$egin{aligned} pdf_{sgn}(t,\sigma_t| au,b,s) &= pdf_{sgn}(t|\sigma_t, au,b,s)pdf_{sgn}(\sigma_t) \ &\propto \int_0^\infty e^{-t_{true}/ au} R(t-t_{true}|b,s\sigma_t)dt_{true}pdf_{sgn}(\sigma_t) \end{aligned}$$

 Resolution function(R) for D⁺ is single Gaussian and sum of two Gaussian for D⁰.

Results

$$\tau(D^0)$$
 = 410 ± 1.1 (stat) ± 0.8 (syst) fs
 $\tau(D^+)$ = 1030.4 ± 4.7 (stat) ± 3.1 (syst) fs

PhysRevLett.127.211801

- Correlation coefficient: $\tau(D^+)/\tau(D^0) = 18\%$
- Most precise results, consistent with previous measurements
- Proves excellent vertexing capability of Belle II

- These precise measurements have now paved the road to other lifetime measurements and time dependent measurements.
- Main systematic uncertainty is due to detector alignment, which will improve as we learn more about the detector.

Charmed-baryon lifetime puzzle

 The charmed-baryon lifetime hierarchy was long believed to be:

$$au(\Xi_c^+) > au(\Lambda_c^+) > au(\Xi_c^0) > au(\Omega_c^0)$$

- In 2018 and 2021, LHCb measured the Ω_c lifetime to be nearly four times larger than previously measured
- This changed the hierarchy to be:

$$au(\Xi_c^+) > au(\Omega_c^0) > au(\Lambda_c^+) > au(\Xi_c^0)$$

Hierarchy of lifetime of charmed baryon

• Recent measurements by LHCb were made relative to the lifetime distribution of D^0 via $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ and D^+ via $D^+ \rightarrow K^- \pi^+ \pi^+$ in order to control systematic uncertainties.

PDG (2018)

Belle II will measure these lifetimes with high precision and hopefully resolve this discrepancy.

Time-integrated CPV

- As in Belle, Belle II can contribute in measuring more precisely the CPV in the channels with neutral particles as final particles
- A_{CP} expected to reach the O(10⁻⁴) for neutral channels
- Time-integrated CP asymmetries measured by Belle, and the precisions expected for Belle II in 50ab⁻¹ of data
- Ongoing analyses on time-integrated CPV:

$$1.\,\,D^0 o K_s\,\,K_s$$

$$2.\,\,D^0 o K_s\,\pi^0$$

$$3.\,\,D^0
ightarrow\pi^+\,\pi^-\,\pi^0$$

$$4.\,\,D^0
ightarrow\pi^0\,\pi^0$$

5.
$$D^+ o \pi^+ \, \pi^0$$

6.
$$\Xi_c^+ o \Sigma^+ \ \pi^+ \ \pi^-$$

Mode	\mathcal{L} (fb ⁻¹)	A_{CP} (%)	Belle II 50 ab^{-1}
$D^0 o K^+K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03
$D^0 o \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^0 o \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09
$D^0 o K^0_S\pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.02
$D^0 ightarrow K_S^0 K_S^0$	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.23
$D^0 o K^0_S\eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 o K^0_S\eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 o \pi^+\pi^-\pi^0$	532	$+0.43 \pm 1.30$	± 0.13
$D^0 o K^+\pi^-\pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 o K^+\pi^-\pi^+\pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04
$D^+ o \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17
$D^+ \to \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12\pm1.12\pm0.17$	± 0.14
$D^+ o K_S^0 \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.02
$D^+ o K_S^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.04
$D_s^+ o K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29
$D_s^+ \to K_S^0 K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05

Belle II Physics Book

Summary

- SuperKEKB and Belle II are breaking records and producing precision measurements already
- Achieved world record in instantaneous luminosity: 3.8x 10³⁴ cm⁻² s⁻¹
- Proven excellent vertexing capabilities
- World's most precise D⁰ and D⁺ lifetimes measured to date
- Data ~ 268 fb⁻¹ has been collected so far (more to come!)
- Excellent platform for charm measurements, more exciting results coming soon with greater luminosities

Thank you!

Backup slides

Charmed-baryon lifetimes

- Another example to test the capability of Belle II for precision measurements
- Helps to strengthen tests of tools like HQE
 - Contributions from spectator effects not present in mesons
- Precise charmed baryon lifetime measurements are necessary to clarify the lifetime hierarchy and better constrain model dependencies
- Most recent (relative) measurement of the Λ_c lifetime by LHCb
 - \circ Because of the new lifetime of D⁺ measured precisely by Belle II, lifetime of Λ will change
 - Last measurement at an e⁺e⁻ machine by CLEO almost 20 years ago in mild tension with other measurements
- Analysis to directly measure Λ_c lifetime is ongoing

LHCB, $\tau = 203.5 \pm 1.0 \pm 1.3 \pm 1.4$ fs FOCUS, $\tau = 204.6 \pm 3.4 \pm 2.5$ fs CLEO, $\tau = 179.6 \pm 6.9 \pm 4.4$ fs

