Recent Belle II results on timedependent CP violation and charm Michele Veronesi, on behalf of the Belle II collaboration Lepton-Photon, 17-21 July 2023

Introduction

- Measurements of $\sin 2\phi_1$ in loopsuppressed $b \rightarrow sq\bar{q}$ transitions, probing interference with non-SM amplitudes
 - Clean theory prediction, only few % deviation from tree-level b→scc
 - Many final states with neutrals, ideal at Belle II
- Rich program of charm-hadron lifetime measurements (D^0 , D^+ , Λ_c^+ , Ω_c^0 , D_s^+)
 - Test of non-perturbative QCD (e.g. lifetime hierarchy)
 - Probing absolute lifetimes with decay-time independent selection efficiency, unique to e+e- collider

Michele Veronesi | Lepton Photon 2023

Belle II at SuperKEKB

- Asymmetric e⁺e⁻ collisions at the SuperKEKB accelerator complex in Japan
 - Achieved world's highest instantaneous luminosity $(4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1})$
 - ► Collected 362 fb⁻¹ at the Y(4S) in 2019-22, corresponding to 387M BB pairs
 - Additional 42.3 fb⁻¹ off-resonance
- Almost brand new detector, especially important for time-dependent measurements
 - ► x2 better impact parameter resolution wrt Belle (radial/longitudinal =10/15 μ m), thanks to pixel detector closer to interaction region
 - Efficient neutrals reconstruction (π^0 , K_s) and charged K/π separation

Michele Veronesi | Lepton Photon 2023

e+e- collision

Charm baryon lifetimes

- Measurement of absolute lifetimes
 - Calibration of the position of the interaction region (~250 μ m in z)

 $70 \ \mathrm{fs}$

Candidates per

 Distance between e+einteraction point and decay vertex (~100 µm)

Precise D_s + lifetime

- Reconstructing 116k $D_s^+ \rightarrow \phi \pi^+$ decays, using ~half of Belle II dataset
 - Secondary D_s + from B decays efficiently rejected with requirement on momentum
 - Background decay-time PDF modeled with events from the upper D_s^+ mass sideband
- Most precise D_s + lifetime measurement (~twice as precise as world average)
 - Leading systematic uncertainties from the resolution function and residual misalignment

$$\tau_{D_s^+} = (498.7 \pm 1.7^{+1.1}_{-0.8}) \mathrm{fs}$$

PDG: $\tau = 504 + 4$ fs

Michele Veronesi | Lepton Photon 2023

arxiv:2306.00365

Charm flavor tagger

- Novel flavor-tagging algorithm recovering D^o candidates not tagged by traditional approach of reconstructing the D^{*+} \rightarrow D^o π^+ decay chain $D^{*+} \rightarrow D^{o}\pi^+_{s}$
- Exploiting charm pair production and charge correlation between signal D flavor and the tracks in the rest of the event
- Effective tagging efficiency calibrated in data with flavor-specific decays, roughly doubling the size of tagged D^o sample: $\varepsilon_{eff} = 47.91 \pm 0.07$ (stat) ± 0.51 (syst) %

Michele Veronesi | Lepton Photon 2023

Proper-time difference

- Measuring the time difference Δt of coherently produced BB pairs from the decay of a Y(4S), boosted along z
- Improved Δz resolution from pixel detector, in spite of lower boost
 - ► Belle: $\beta\gamma=0.43$, $\Delta z\approx 200\mu m$ —> Belle II: $\beta\gamma=0.29$, $\Delta z\approx 130\mu m$
- Enhanced Δt resolution from the beam spot profile in combination with the new nano-beam scheme

Michele Veronesi | Lepton Photon 2023

 Δt) + $A \cos(\Delta m_d \Delta t)$] $\big\},$ q = $\Delta z \approx \Delta t \cdot \beta \gamma$

 $-\overline{B}_{tag}^{c}$

Tag-side

vertex

 $B^0_{\rm sig}$

Signal-side

vertex

 B^0

sig

Pixel detector radius ≈ 1.4 cm

$B \rightarrow$

- Sensitive to effective value of $sin2\phi_1$ in $b \rightarrow ss\bar{s}$ penguin transitions
 - Experimentally clean with good Δt resolution from 2 prompt tracks
 - Main challenge: dilution from nonresonant decays with opposite CP
- Quasi-two body analysis of resonant $B \rightarrow \phi K_s$ decays
 - Non-resonant $B \rightarrow K + K K_s$ disentangled in $\cos\theta_{\rm H}$
 - Effect of neglecting interference estimated with inputs from previous Dalitz measurement [PRD 82, 073011

Michele Veronesi | Lepton Photon 2023

arxiv:2307.02802

Similar precision on ACP as previous determinations HFLAV: $S = 0.74^{+0.11} \cdot 0.13$, $A = -0.01 \pm 0.14$

$B \rightarrow K_s K_s K_s$

Same underlying quark transition as
 B→ φK_s, w/o contributions from
 opposite-CP backgrounds

GeV/c²

Events per 0.003

- Main challenge: no prompt tracks
 - Vertex reconstruction relies on the K_s trajectories and profile of the interaction point
- Dataset divided into events with (TD) and without (TI) vertex information
 - TD events used in the Δt fit for the determination of A_{CP} and S_{CP}
 - TI events used only to constrain
 ACP

Michele Veronesi | Lepton Photon 2023

Similar precision on ACP as previous determinations HFLAV: $S = -0.83\pm0.17$, $A = 0.15\pm0.12$

$B \rightarrow K_{s}\pi^{0}$

- Sensitive to effective value of $\sin 2\phi_1$ in $b \rightarrow sd\bar{d}$ and limiting the precision of the isospin sum-rule in $B \rightarrow hh$ (see <u>Xiaodong's talk</u>)
- Requires excellent capabilities with neutrals, unique to Belle II
 - K_s reconstruction & vertexing
 - High purity & efficient π^0 selection
- Validated on $B \rightarrow J/\psi K_s$ events reconstructed w/o J/ ψ vertex
- Competitive with world's best results using much less luminosity

Michele Veronesi | Lepton Photon 2023

arxiv:2305.07555

HFLAV: $S = 0.57 \pm 0.17$, $A = -0.01 \pm 0.10$

Summary

- Continuing effort in charm physics
 - World's leading measurements of charm-hadron lifetimes
 - Expanding effective dataset size with novel tagging algorithms
- Several new results on time-dependent CP violation with penguins
 - Essential to probe generic BSM physics in loops
 - Precision on several observables already on par with world's best and mostly unique to Belle II

Michele Veronesi | Lepton Photon 2023

Backup

B-factory 101

Beam-constrained mass [GeV/c²]

Energy difference [GeV]

Event shape

<u>PRL12</u>

1060

E687

CLEO

2000

D⁺ lifetime [fs]

1020

7,211801 (2021)

$\Lambda_{c}^{+} \rightarrow p K \pi$

TABLE I. Systematic uncertainties on the Λ_c^+ lifetime.

Source	Uncertainty (fs)
Ξ_c contamination	0.34
Resolution model	0.46
Non- Ξ_c backgrounds	0.20
Detector alignment	0.46
Momentum scale	0.09
Total	0.77

Source

Resolution function Background (t, σ_t) Binning of σ_t his Imperfect detector Sample purity Momentum scale D_s^+ mass Total

TABLE I. Summary of systematic uncertainties.

 TABLE I.
 Systematic uncertaines.

Source	Uncertainty (fs)
Fit bias	3.4
Resolution model	6.2
Background model	8.3
Detector alignment	1.6
Momentum scale	0.2
Input Ω_c^0 mass	0.2
Total	11.0

$$D_{S}^{+} \rightarrow \Phi \pi^{+}$$

	Uncertainty (fs)
ion	+0.85
(t_t) distribution	± 0.40
stogram PDF	± 0.10
or alignment	± 0.56
	± 0.09
e factor	± 0.28
	± 0.02
	$+1.14 \\ -0.76$

Experiment		$N(B\overline{B})$	$-\eta S_{b\to q\overline{q}s}$	$C_{b \to q \overline{q} s}$
			ϕK^0	
BABAR	[262]	470M	$0.66 \pm 0.17 \pm 0.07$	$0.05 \pm 0.18 \pm 0.05$
Belle	[261]	$657\mathrm{M}$	$0.90 {}^{+0.09}_{-0.19}$	$-0.04 \pm 0.20 \pm 0.10 \pm 0.02$
Belle II (362	2MBBp	airs)	$0.54 \pm 0.26^{+0.06}_{-0.08}$	$-0.31 \pm 0.20 \pm 0.05$
			$K^{0}_{S}K^{0}_{S}K^{0}_{S}$	
BABAR	[383]	468M	$0.94^{+0.21}_{-0.24}\pm 0.06$	$-0.17 \pm 0.18 \pm 0.04$
Belle	[384]	722M	$0.71 \pm 0.23 \pm 0.05$	$-0.12 \pm 0.16 \pm 0.05$
Belle II (362	2MBBp	airs)	$-1.37^{+0.35}_{-0.45} \pm 0.03$	$-0.07^{+0.15}_{-0.20} \pm 0.02$
			$\pi^0 K^0$	
BABAR	[381]	$467 \mathrm{M}$	$0.55 \pm 0.20 \pm 0.03$	$0.13 \pm 0.13 \pm 0.03$
Belle	[378]	$657\mathrm{M}$	$0.67 \pm 0.31 \pm 0.08$	$-0.14 \pm 0.13 \pm 0.06$
Belle II (362	2MBBp	airs)	$0.74^{+0.20}_{-0.23} \pm 0.04$	$-0.04^{+0.15}_{-0.14} \pm 0.05$

B→Ksπ0

Source	δA	
Flavor tagging	0.013	0
Resolution function	0.014	0
$B\overline{B}$ background asymmetry	0.030	0
$q\overline{q}$ background asymmetry	0.028	<
Signal modeling	0.004	0
Background modeling	0.006	0
Fit bias	0.005	0
Best candidate selection	0.005	0
$ au_{B^0}$ and Δm_d	< 0.001	<
Tag-side interference	0.006	0
VXD misalignment	0.004	0
Total	0.047	0

arxiv:2305.07555

B**→\$**Ks

Table II: Summary of systematic uncertainties.

Source	$\sigma(A)$	$\sigma(S)$		
Calibration with $B^0 \to D^{(*)-} \pi^+$ decays				
Calibration sample size	± 0.010	± 0.009		
Calibration sample systematic	± 0.010	± 0.012		
Sample dependence	-0.005	+0.021		
Fit model				
Fit bias	$^{+0.017}_{-0.028}$	$+0.033 \\ -0.062$		
$B^0 \to K^+ K^- K_S^0$ backgrounds	-0.020	-0.011		
Fixed fit shapes	± 0.009	± 0.022		
τ_{B^0} and Δm_d uncertainties	± 0.006	± 0.022		
$A_{K^+K^-K^0_S}$ and $S_{K^+K^-K^0_S}$	± 0.014	± 0.013		
$B\overline{B}$ backgrounds	$+0.030 \\ -0.019$	$+0.017 \\ -0.031$		
Tag-side interference	< 0.001	+0.012		
Multiple candidates	+0.032	-0.002		
Δt measurement				
Detector misalignment	+0.002	-0.002		
Momentum scale	± 0.001	± 0.001		
Beam spot	± 0.002	± 0.002		
Δt approximation	< 0.001	-0.018		
Total systematic	$+0.052 \\ -0.046$	$+0.058 \\ -0.082$		
Statistical	± 0.201	± 0.256		

arxiv:2307.02802

19

B->KsKsKs

Source	δS	δ.
Signal probability	0.014	0.0
Fit bias	0.014	0.0
Flavor tagging	0.013	0.0
Resolution function	0.013	0.0
Tag-side interference	0.011	0.0
Vertex reconstruction	0.011	0.0
Physics parameters	0.009	0.0
Detector misalignment	0.008	0.0
Background Δt shape	0.004	0.0
Total	0.032	0.0

