

Recent Measurements of $|V_{cb}|$ and $|V_{ub}|$ with Belle (II)

XXX Cracow EPIPHANY Conference on Precision Physics at High Energy Colliders

Moritz Bauer on behalf of Belle & Belle II | 12. January 2024

CKM Unitarity: $|V_{cb}|$ and $|V_{ub}|$

- |V_{cb}| and |V_{ub}| are central to unitarity tests used to constrain the CKM matrix and thus the SM
 - Explicitly: Direct comparison between ratio $|V_{\rm ub}|/|V_{\rm cb}|$ and angle $\phi_{\rm 1}$
- Most precise determinations: Semileptonic B decays

$$egin{aligned} |V_{\mathsf{xb}}| &= \sqrt{rac{\mathcal{B}(\mathsf{B}
ightarrow \mathsf{X} \ell
u_\ell)}{ au_{\mathcal{B}} \cdot \mathsf{\Gamma}_{\mathsf{incl./excl.}}}} \ &X \in \{X_{\mathcal{U}}, X_{\mathcal{C}}, \mathcal{D}^{(*)}, \pi, \ldots\} \end{aligned}$$

Exclusive and Inclusive Measurements

- Exclusive:
 - Analysis: Reconstruct specific final state(s), e.g. as B \rightarrow D $\ell\nu$ for $|V_{cb}|$
 - Theory input: Lattice QCD (LQCD)
- Inclusive:
 - Analysis: Measure entirety of B → X_cℓν / $B \to X_u \ell \nu$ decays for $|V_{cb}| / |V_{ub}|$
 - Theory input: Heavy Quark Expansion
- ho $\approx 3\sigma$ tension between these two approaches
- Severely limits precision tests in flavor physics

Ellipse: 68% CL

The Belle II Experiment

Data set: $423.7 \, \text{fb}^{-1}$ ($\approx 1/2 \, \text{Belle}$)

Belle II: $|V_{cb}|$ from B⁰ \rightarrow D* $\ell\nu$

Reconstruction chain:

truction chain:
$$\mathsf{B}\to\mathsf{D}^{*+}\ell\nu_\ell \\ \stackrel{\mathsf{L}}{\longmapsto} \mathsf{D}^0\!\!(\pi_{\mathsf{slow}}^+) \\ \stackrel{\mathsf{K}^-\pi^+}{\longmapsto} \mathsf{K}^-\pi^+$$

■ Main syst.: Slow (*p* < 0.4GeV/*c*) pion efficiency

$$w = \frac{1}{m_{\rm B}} p_{\rm B}^{\mu} \frac{1}{m_{\rm X_C}} p_{\rm X_C \mu}$$

$$\cos\theta_{BY} = \frac{2E_B^*E_{D^*\ell}^* - m_B^2 - m_{D^*\ell}^2}{2|\vec{p}_B^*||\vec{p}_{D^*\ell}^*|}$$

- 2D fit in $\cos \theta_{BY}$ and $\Delta M = M(D^{*+}) M(D^{0})$ for each bin of χ , $\cos \theta_{\ell}$, $\cos \theta_{\nu}$ and w
- |V_{cb}| extraction: Fit these distributions with **CLN** Nucl. Phys. B530, 153 and **BGL** PRD 56, 6895 parameterizations

Belle II: $|V_{\rm cb}|$ from B ightarrow D* ℓu

- Inclusion of LQCD constraint beyond zero-recoil (w = [1.03, 1.10, 1.17]) in two scenarios, disagreement with LQCD in R₁ and R₂
- $|V_{\rm cb}|$ result compatible with both the excl. (1.5 σ) and incl. (1.3 σ) WAs
- Future: Higher precision through better understanding of slow pion efficiency in larger data sets

	Constraints on	Constraints on
BGL	$h_{A_1}(w)$	$h_{A_1}(w), R_1(w), R_2(w)$
$a_0 \times 10^3$	21.7 ± 1.3	25.6 ± 0.8
$b_0 \times 10^3$	13.19 ± 0.24	13.61 ± 0.23
$b_1 \times 10^3$	-6 ± 6	2 ± 6
$c_1 \times 10^3$	-0.9 ± 0.7	0.0 ± 0.7
$ V_{cb} \times 10^3$	40.3 ± 1.2	38.3 ± 1.1
$\chi^2/{ m ndf}$	39/33	75/39
p value	21%	0.04%

Belle II: $|V_{ch}|$ from B \rightarrow D $\ell\nu$

Preliminary, arXiv: 2210.13143

Preliminary, arXiv: 2210.13143
$$\mathsf{B}^-\to\mathsf{D}^0\ell\nu_\ell \qquad \qquad \mathsf{B}^0\to\mathsf{D}^+\ell\nu_\ell \\ & \stackrel{\textstyle \bigsqcup}{\longmapsto}\;\mathsf{K}^-\pi^+ \qquad \qquad \stackrel{\textstyle \bigsqcup}{\longmapsto}\;\mathsf{K}^-\pi^+\pi^+$$

- Key differences to B \rightarrow D* $\ell\nu$:
 - No slow pion but more backgrounds
 - Syst. uncer. dominated by background modelling: $B \to X_c \ell \nu_\ell$ BF/FFs and "fake" D PDFs
- 5 component fit in $\cos \theta_{RY}$ for each bin of w:

Measured $|V_{cb}| = (38.3 \pm 1.2) \times 10^{-3}$ 3% error, competitive with previous determinations

Full-Event Tagging

- e⁻e⁺ collisions "clean" compared to pp
 - $\blacksquare \approx 10 \text{ tracks in a typical } B\overline{B} \text{ event}$
- Full-Event Tagging: Use 2nd B e.g. with Full Event Interpretation (FEI). Keck, T. et al.
 - Higher purity & resolution with this MVA approach
- Trade-off: Challenging calibration & low efficiency

Calibration with momentum of lepton in B \rightarrow X $\ell\nu_{\ell}$ decays. Correction factors of \approx 0.6 due to poorly understood tagging channels.

Belle II: $|V_{cb}|$ from Tagged B⁰ \rightarrow D* $\ell\nu$

Preliminary, arXiv: 2301.04716

• Very pure signal selection with ΔM and missing mass from recoil of second B:

$$\mathit{M}_{\mathsf{miss}}^2 = \left(-\mathit{p}_{\mathsf{B}_{\mathsf{tag}}} - \mathit{p}_{\mathsf{D}^*\ell}\right)^2$$

• Major syst. uncerts.: Slow π^{\pm} & tagging

Fit CLN Nucl. Phys. B530, 153 parametrization to differential decay rates:

$$|V_{\rm cb}| = (37.9 \pm 2.0_{\rm stat} \pm 1.9_{\rm syst}) \times 10^{-3}$$

calibration

Belle: Tagged $B^0 o D^* \ell u$ Measurements

- Two results with 711 fb⁻¹ Belle data set: Differential Distributions PRD 108, 012002 and Angular Coefficients J(w) Submitted to PRL of $\mathsf{B} \to \mathsf{D}^* \ell \nu$
- Full-Event tagging and extraction of N_{events} in $M_{\rm miss}^2$
- Challenging to calibrate tagging method → Use only normalized differential information and take absolute BF from HFLAV.
 - Improvement of $|V_{ch}|$ from high granularity in differential shapes

Belle: Differential Distributions and Angular Distributions

- Established approach: Fit projections in 160 bins of w, $\cos \theta_{\ell}$, $\cos \theta_{\nu}$ and χ
- 3 fit scenarios with different LQCD constraints
- Full LQCD information: Tension with $R_2(w)$
 - Also observed by Belle II

PRD 108, 012002 and arXiv:2310.20286

 Novel approach: Directly fit 8 angular coefficients J(w)

$$\begin{split} &\frac{\mathrm{d}\Gamma(\bar{B}\to D^*\ell\bar{\nu}_\ell)}{\mathrm{d}w\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_V\,\mathrm{d}\chi} \\ &= \frac{2G_\mathrm{F}^2\eta_\mathrm{EW}^2|V_\mathrm{cb}|^2m_B^4m_{D^*}}{2\pi^4} \times \left(J_{1s}\sin^2\theta_V + J_{1c}\cos^2\theta_V\right. \\ &+ \left(J_{2s}\sin^2\theta_V + J_{2c}\cos^2\theta_V\right)\cos2\theta_\ell \\ &+ J_3\sin^2\theta_V\sin^2\theta_\ell\cos2\chi \\ &+ J_4\sin2\theta_V\sin2\theta_\ell\cos\chi + J_5\sin2\theta_V\sin\theta_\ell\cos\chi \\ &+ \left(J_{6s}\sin^2\theta_V + J_{6c}\cos^2\theta_V\right)\cos\theta_\ell \\ &+ J_7\sin2\theta_V\sin\theta_\ell\sin\chi + J_8\sin2\theta_V\sin2\theta_\ell\sin\chi \\ &+ J_9\sin^2\theta_V\sin^2\theta_\ell\sin2\chi \right) \end{split}$$

Belle: Tagged $B^0 \to D^* \ell \nu$ Results

PRD 108, 012002 and arXiv:2310.20286 (Submitted to PRL)

- Both publications: Variety of results with different LQCD inputs and **BGL/CLN** parametrizations
- Determinations with both methods yield higher $|V_{ch}|$ than excl. HFLAV average
- Most results compatible with
 - inclusive determinations in PLB 822,
 - 136679 & JHEP 2022, 68
 - CKM unitarity

Belle II: $|V_{\mathsf{ub}}|$ from $\mathsf{B} \to \pi^+ \ell \nu_\ell$

- Preliminary, arXiv:2210.04224
 - Form factors given as function of (squared) momentum transfer $q^2=(p_B-p_\pi)^2$
 - Signal fit of beam-constrained mass M_{bc} and energy difference ΔE in 6 bins of q^2
 - lacktriangle Main systematic uncertainties: Background (Light quark production, B ightarrow $ho\ell\nu_\ell$) modelling
 - Future: Simultaneous determinations to control this

$$\Delta E = E_B^* - E_{ ext{beam}}^*$$
 $M_{ ext{bc}} = \sqrt{{E_{ ext{beam}}^*}^2 - |ec{p}_B^*|^2}$

Belle II: $|V_{\mathsf{ub}}|$ from B $ightarrow \pi^+ \ell u_\ell$

- Preliminary, arXiv:2210.04224
 - lacktriangle Form factors given as function of (squared) momentum transfer $q^2=(p_B-p_\pi)^2$
 - Signal fit of beam-constrained mass $M_{\rm bc}$ and energy difference ΔE in 6 bins of q^2 Main systematic uncertainties: Background (Light quark production, B $\rightarrow \rho \ell \nu_{\ell}$) modelling
 - Future: Simultaneous determinations to control this

- | V_{ub}| fitted with Bourrely-Caprini-Lellouch (BCL) expansion Phys. Rev. D, 79, Jan 2009
 - Includes LQCD constraints
 - Fit in q² reduces theory uncertainties in |V_{ub}| extraction

Result:

$$|V_{\mathsf{ub}}| = (3.55 \pm 0.12_{\mathsf{stat}} \pm 0.13_{\mathsf{syst}} \pm 0.17_{\mathsf{theo}}) \times 10^{-3}$$

Belle: $|V_{ m ub}|$ from Tagged Inclusive B ightarrow X $_{ m u}\ell u_\ell$

- Challenge: Covering large (up to 86%) phase space only possible with huge B → X_cℓν_ℓ bkg.
 - Large coverage decreases theory uncertainties
- Solution: Tagging and MVA discrimination

Result: $|V_{\rm ub}| = (4.10 \pm 0.09_{\rm stat} \pm 0.22_{\rm syst} \pm 0.15_{\rm theo}) \times 10^{-3} \Rightarrow$ Compatible within 1.3 σ with excl. HFLAV

Belle: $|V_{\rm ub}|$ from Simultaneous B $o \pi \ell u_\ell$ and B $o {\sf X}_{\sf u} \ell u_\ell$

- Improved treatment of shared systematic uncertainties by simultaneous determination
- 2D-fit in bins of
 - q^2 : number of charged pions $(N_{\pi^{\pm}})$
- Only fit in $N_{x\pm}$ for $M_X > 1.7 \,\mathrm{GeV}$
- Dominant systematic uncertainties:
 - Exclusive: Tagging efficiency calibration (4.1%) and B → X_{II}ℓν_ℓ model (3.5%)
 - Inclusive: B \rightarrow X_u $\ell\nu_{\ell}$ model (10.9%) and the u \rightarrow X_u fragmentation (5.3%)

Belle: $|\emph{V}_{ub}|$ from Simultaneous B $o \pi \ell u_\ell$ and B $o \emph{X}_u \ell u_\ell$ PRL 131, 211801

- Multiple scenarios in the |V_{ub}| fit:
 - Separated for π^{\pm} / π^{0} or (isospin) combined
 - BCL constraint for B $\to \pi \ell \nu_\ell$ FFs taken from a global fit of LQCD + previous exp. results (shown) or pure LQCD input

Results (with exp. constraint)

$$\begin{split} |V_{ub}^{\text{excl}}| &= (3.78 \pm 0.23_{\textit{stat}} \pm 0.16_{\textit{syst}} \pm 0.14_{\textit{theo}}) \times 10^{-3} \\ |V_{ub}^{\text{incl}}| &= (3.88 \pm 0.20_{\textit{stat}} \pm 0.31_{\textit{syst}} \pm 0.09_{\textit{theo}}) \times 10^{-3} \\ \text{Ratio: } |V_{ub}^{\text{excl}}|/|V_{ub}^{\text{incl}}| &= 0.97 \pm 0.12 \\ &\Rightarrow \textbf{Compatible with unity} \end{split}$$

Belle: Ratio of $|V_{ub}|$ and $|V_{cb}|$ from Tagged Inclusive Decays

Ratio avoids uncert. from tag efficiency

Submitted to PRD, arXiv: 2311.00458

- lacksquare B ightarrow X_u $\ell
 u_{\ell}$ yields extracted in q^2 : p_{ℓ}^B fit
- Dominant uncertainty from predictions of partial rates

Result (with BLNP model for B $o X_{\mu}\ell\nu_{\ell}$)

$$\begin{split} \frac{|\textit{V}_{\text{ub}}|}{|\textit{V}_{\text{cb}}|} &= 0.0972 (1 \pm 4.2\%_{\text{stat}} \pm 3.9\%_{\textit{syst}} \\ &\pm 5.2\%_{\Delta\Gamma(\text{B} \rightarrow \text{X}_{\text{c}}\ell\nu_{\ell})} \\ &\pm 2.0\%_{\Delta\Gamma(\text{B} \rightarrow \text{X}_{\text{u}}\ell\nu_{\ell})}) \end{split}$$

Ellipse: 68% CL

Summary

9 measurements shown today: Belle II is ramping up with many new measurements and we're squeezing the last drop from the well-understood Belle data set!

Backup

Belle II: $|\emph{V}_{\mathsf{ub}}|$ from Tagged B $ightarrow \pi \mathrm{e}^- u_\ell$

Belle II

- Tagged analysis with fit of M²_{miss} in three bins of q²
- Using $189 \, \text{fb}^{-1}$ data set ($\approx 1/2 \, \text{of current}$)

Preliminary, arXiv: 2206.08102

 Charged and neutral pions but only electron channel (so far)

Result:

$$|V_{\rm ub}| = (3.88 \pm 0.45) \times 10^{-3}$$

Parameterizations and Models

- **Exclusive** $|V_{cb}|$ parametrizations:
 - Boyd-Grinstein-Lebed (BGL) PRD 56, 6895: Maps complex q^2 plane to unit disk and parametrizes form factors as power series
 - BGL truncation possible with nested hypothesis test PRD 100, 013005
 - Caprini-Lellouch-Neubert (CLN) Nucl. Phys. B530, 153: Additional bounds from Heavy Quark Effective Theory (HQET)
- **Exclusive** $|V_{ub}|$ parametrization:
 - Bourrely-Caprini-Lellouch (BCL) Phys. Rev. D, 79, Jan 2009: Similar to BGL but avoids truncation effects at large q^2 relevant for e.g. B $\to \pi \ell \nu_\ell$

- Inclusive $|V_{ub}|$ Models (in this talk):
 - Bosch-Lange-Neubert-Paz (BLNP) PRD 72, 073006
 - Gambino-Giordano-Ossola-Uraltsev (GGOU) JHEP 10, 058 (2007)
 - Dressed Gluon Exponentiation (DGE;
 Andersen & Gardi) JHEP01(2006)097
 - Aglietti-Di Lodovido-Ferrera-Ricciardi (ADFR) EPJC 59, 831–840 (2009)