Measurements of $|V_{cb}|$ and $|V_{ub}|$ at Belle and Belle II

Michele Aversano, on behalf of the Belle & Belle II Collaboration Nagoya University

42nd International Conference on High Energy Physics 18-24 July 2024, Prague

Determination of |V_{ub}| and |V_{cb}|

• $|V_{ub}|$ and $|V_{cb}|$ important to constrain CKM Unitarity

$$\begin{bmatrix}d' \ s' \ b'\end{bmatrix} = egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix}d \ s \ b\end{bmatrix}$$

Precisely measured with semileptonic B decays

Longstanding tension among exclusive and inclusive determinations

$$BF(B \to X_q l \nu_l)$$

$$\to |V_{qb}|^2 (1 + \cdots)$$

OPE expantion from Theory

Recent results covered in this talk

 $|V_{cb}|$

• Measurement of Angular Coefficients of $\overline{B} \to D^* l \overline{\nu}_l$: Implications for $|V_{cb}|$ and Tests of Lepton Flavor Universality (Belle, <u>arXiv:2310.20286</u> accepted by PRL, <u>HEPData</u>)

 $|V_{ub}|$

- Determination of $|V_{ub}|$ from simultaneous measurements of untagged $B^0 \to \pi^- l^+ \nu_l$ and $B^+ \to \rho^0 l^+ \nu_l$ decays (Belle II, new result at Moriond 2024)
- First Simultaneous Determination of Inclusive and Exclusive $|V_{ub}|$ (Belle, PRL 131, 211801)

 $\frac{|V_{ub}|}{|V_{cb}|}$

• Measurement of the Ratio of Partial Branching Fractions of Inclusive $\bar{B} \to X_u l \bar{\nu}_l$ to $\bar{B} \to X_c l \bar{\nu}_l$ and the Ratio of their Spectra with Hadronic Tagging (Belle, arXiv:2310.20286 submitted to PRD)

$|V_{cb}|$ from Angular Coefficients of $\overline{B} o D^* l \overline{ u}_l$

- Full Belle dataset of 711 fb⁻¹ and hadronic B tagging
- Both charged and neutral B mesons with the decay chains $\overline{B^0} \to D^{*+} l \overline{\nu}_l$ with $D^{*+} \to D^0 \pi^+ / D^+ \pi^0$, and $B^- \to D^{*0} l \overline{\nu}_l$ with $D^{*0} \to D^0 \pi^0$
- Non-resonant e^+e^- interactions are suppressed using a multivariate classifier
- The angular coefficients obtained from data in bins of the hadronic recoil parameter w

$$w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$

Four-dimensional differential decay rate for $\overline{B} \to D^* l \overline{\nu}_l$ can be expressed in terms of 12 functions J_i that depend only on w

SM test and LFU test (with e vs μ) possible

$|V_{cb}|$ from Angular Coefficients of $\overline{B} o D^* l \overline{ u}_l$

Fit result with **BGL parameterizations**:

$$|V_{cb}| = (41.0 \pm 0.3(stat) \pm 0.4(syst) \pm 0.5(theo))$$

$|V_{cb}|$ from Angular Coefficients of $\overline{B} o D^* l \overline{ u}_l$

- |V_{cb}| in agreement with previous analysis on same dataset (PRD 108(2023) 012002)
- In agreement with latest inclusive results and HFLAV inclusive average

|V $_{\mathsf{ub}}$ | from $B^0 o \pi^- l^+ u_l$ and $B^+ o ho^0 l^+ u_l$

Belle II

Preliminary

- Full Belle II Run1 dataset of 364 fb⁻¹, untagged
- Non-resonant e^+e^- interactions and B background suppressed using BDTs
- Signal yields extracted from 2 kinematic variables in bins of q^2 simultaneously for $\pi l \nu$ and $\rho l \nu$ mode $\rightarrow (13+10) \times 4 \times 5$ bins

 $M_{bc} = \sqrt{E_{beam}^{*2} - \left| \overrightarrow{p_B^*} \right|^2}$

Total branching ratio is the sum of all the partial ΔB_i in each q² bin

|V $_{\mathsf{ub}}$ | from $B^0 o \pi^- l^+ u_l$ and $B^+ o ho^0 l^+ u_l$

$$\mathcal{B}(B^0 \to \pi^- l^+ \nu_l) = \left(1.516 \pm 0.042(stat) \pm 0.059(syst)\right) \times 10^{-4}$$

$$\mathcal{B}(B^+ \to \rho^0 l^+ \nu_l) = \left(1.625 \pm 0.079(stat) \pm 0.180(syst)\right) \times 10^{-4}$$

Consistent with PDG

 $|V_{ub}|$ extracted separately from $\pi l \nu$ and $\rho l \nu$ mode using χ^2 fits to the measured q^2 spectra

$$\chi^{2} = \sum_{i,j=1}^{N} (\Delta B_{i} - \Delta \Gamma_{i} \tau) C_{ij}^{-1} (\Delta B_{j} - \Delta \Gamma_{j} \tau) + \sum_{m} \chi_{Theory,m}^{2}$$

Form-factor coefficents:

BCL for $B^0 \to \pi^- l^+ \nu_l$

BSZ for $B^+ \rightarrow \rho^0 l^+ \nu_l$

$$B^0 \to \pi^- l^+ \nu_l$$
: $|V_{ub}| = (3.93 \pm 0.09(stat) \pm 0.13(syst) \pm 0.19(theo)) \times 10^{-3}$ LQCD constraints

$$|V_{ub}| = (3.73 \pm 0.07(stat) \pm 0.07(syst) \pm 0.16(theo)) \times 10^{-3}$$
 LQCD+LCSR constraints

$$B^+ \to \rho^0 l^+ \nu_l$$
: $|V_{ub}| = (3.19 \pm 0.12(stat) \pm 0.17(syst) \pm 0.26(theo)) \times 10^{-3}$ LCSR constraints

|V $_{\mathsf{ub}}$ | from $B^0 o \pi^- l^+ u_l$ and $B^+ o ho^0 l^+ u_l$

Reducing the tension with $|V_{ub}|$ inclusive

Still large uncertainty

|V_{ub}| from Inclusive and Exclusive B decays

Full Belle dataset of 711 fb⁻¹ and hadronic B tagging

• Same analysis strategy from previous Belle analysis of $B o X_u l \nu$ with hadronic

tagging [PRD 104, 012008 (2021)]

• Extract signal in q^2 : $N_{\pi^{\pm}}$ for $B \to \pi l \nu$ and other $B \to X_{\mu} l \nu$ simultaneously

• $b \rightarrow u$ enhanced region with Low M_X (<1.7 GeV) divided in 5 q^2 bins

• High M_X (>1.7 GeV) $b \rightarrow c$ background dominated region

|V_{ub}| from Inclusive and Exclusive B decays

$|V_{ub}|/|V_{cb}|$ from Inclusive decays

- Full Belle dataset of 711 fb⁻¹ and hadronic B tagging (using Belle II software)
- $B \to X_u l \nu$ yields extracted in q^2 : E_l^B (D^* veto and M_{miss}^2 requirement)
- $B \to X_c l \nu$ yields obtained by subtracting other contributions in total $B \to X l \nu$

$$\begin{split} &\frac{\Delta\mathcal{B}(B\to X_u l \nu)}{\Delta\mathcal{B}(B\to X_c l \nu)} = \\ &= 1.96(1 \pm 8.4\%(stat) \pm 7.9\%(syst)) \times 10^{-2} \end{split}$$

$$\frac{|V_{ub}|}{|V_{cb}|} = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u l \nu)}{\Delta \mathcal{B}(B \to X_c l \nu)}} \frac{\Delta \Gamma(B \to X_u l \nu)}{\Delta \Gamma(B \to X_c l \nu)}$$

$|V_{ub}|/|V_{cb}|$ from Inclusive decays

BELLE Preliminary

Using two theoretical calculations for the partial decay rate of $B \to X_u l \nu$:

$$|V_{ub}|/|V_{cb}|_{BLNP} = 0.0972(1 \pm 4.2\%(stat) \pm 3.9\%(syst) \pm 5.2\%(\Delta\Gamma(B \to X_u l \nu)) \pm 2.0\%(\Delta\Gamma(B \to X_c l \nu)))$$

 $|V_{ub}|/|V_{cb}|_{GGOU} = 0.0996(1 \pm 4.2\%(stat) \pm 3.9\%(syst) \pm 2.3\%(\Delta\Gamma(B \to X_u l \nu)) \pm 2.0\%(\Delta\Gamma(B \to X_c l \nu)))$

Summary

- Improved measurements of $|V_{cb}|$ and $|V_{ub}|$ are essential to increase the constraining power of the Unitarity Triangle fit
- Known initial state kinematics and hermetic detectors make Belle and Belle II ideal for these studies
- Belle and Belle II are producing many updated and improved measurements of $|V_{cb}|$ and $|V_{ub}|$, with both inclusive and exclusive decays

Link to the |Vcb| workshop held last year during the Belle II Physics Week